The Annals of Mathematical Statistics

Conditional Expectation and Unbiased Sequential Estimation

David Blackwell

Full-text: Open access


It is shown that $E\lbrack f(x) E(y \mid x)\rbrack = E(fy)$ whenever $E(fy)$ is finite, and that $\sigma^2E(y \mid x) \leq\le \sigma^2y$, where $E(y \mid x)$ denotes the conditional expectation of $y$ with respect to $x$. These results imply that whenever there is a sufficient statistic $u$ and an unbiased estimate $t$, not a function of $u$ only, for a parameter $\theta$, the function $E(t \mid u)$, which is a function of $u$ only, is an unbiased estimate for $\theta$ with a variance smaller than that of $t$. A sequential unbiased estimate for a parameter is obtained, such that when the sequential test terminates after $i$ observations, the estimate is a function of a sufficient statistic for the parameter with respect to these observations. A special case of this estimate is that obtained by Girshick, Mosteller, and Savage [4] for the parameter of a binomial distribution.

Article information

Ann. Math. Statist., Volume 18, Number 1 (1947), 105-110.

First available in Project Euclid: 28 April 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier



Blackwell, David. Conditional Expectation and Unbiased Sequential Estimation. Ann. Math. Statist. 18 (1947), no. 1, 105--110. doi:10.1214/aoms/1177730497.

Export citation