The Annals of Mathematical Statistics

Multiplex Sampling

David H. Evans

Full-text: Open access

Abstract

The problem of estimating desired characteristics of a response $X$, where $X = h(y)$ and $y$ is a vector random variable with statistically independent components from known distributions, may be handled by standard Monte Carlo techniques. We are interested in the generalization where several distributions are of interest, one at a time, for each component of $y$ and the desired characteristics of $X$ must be estimated for each combination of component distributions. A relatively small number of observations, compared to the total number required if each combination were posed as a separate Monte Carlo problem, may be used instead by sampling from a fictitious distribution, calculating an estimate by appropriately weighting the observations, and then reusing the sample. These techniques are standard; the contribution here is to find the fictitious distribution which is best for the characteristics desired, the distributions of interest, and allied considerations. Various concepts of the meaning for "best" are examined in the paper. Finally, a quantitative evaluation is made under restricted conditions.

Article information

Source
Ann. Math. Statist., Volume 34, Number 4 (1963), 1322-1346.

Dates
First available in Project Euclid: 27 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aoms/1177703868

Digital Object Identifier
doi:10.1214/aoms/1177703868

Mathematical Reviews number (MathSciNet)
MR158498

Zentralblatt MATH identifier
0119.35601

JSTOR
links.jstor.org

Citation

Evans, David H. Multiplex Sampling. Ann. Math. Statist. 34 (1963), no. 4, 1322--1346. doi:10.1214/aoms/1177703868. https://projecteuclid.org/euclid.aoms/1177703868


Export citation