MULTIPLEX SAMPLING

By Davip H. Evans!

Bell Telephone Laboratories, Whippany, New Jersey

0. Summary. The problem of estimating desired characteristics of a response
X, where X = h(y) and y is a vector random variable with statistically in-
dependent components from known distributions, may be handled by standard
Monte Carlo techniques. We are interested in the generalization where several
distributions are of interest, one at a time, for each component of y and the
desired characteristics of X must be estimated for each combination of component
distributions. A relatively small number of observations, compared to the total
number required if each combination were posed as a separate Monte Carlo
problem, may be used instead by sampling from a fictitious distribution, cal-
culating an estimate by appropriately weighting the observations, and then
reusing the sample. These techniques are standard; the contribution here is to
find the fictitious distribution which is best for the characteristics desired, the
distributions of interest, and allied considerations. Various concepts of the mean-
ing for “best’’ are examined in the paper. Finally, a quantitative evaluation is
made under restricted conditions.

1. Introduction.

1.1 General discussion. Multiplex sampling is a method for estimating charac-
teristics of the response by a sampling technique when the response is a function
of several independent variables and each of the several variables is avail-
able in a variety of completely known distributions. The need for such a
method arose in the author’s investigation into so-called statistical tolerancing
[5]. In tolerancing each component is available in several known distributions,
e.g., resistors come in distributions designated as 1%, 5%, 10% or 20% re-
sistors. To choose a set of appropriate tolerances for the components it is neces-
sary to know the statistical characteristics of the response engendered by each
possible choice of component tolerances. To be sure, other data such as the
desired response and the associated costs are also required, but we do not con-
cern ourselves with these problems here. We are concerned with the problem
of estimating the response characteristics in an efficient manner when a Monte
Carlo approach is required and where the efficiency is measured in terms of the
number of observations required to achieve a desired precision in the estimates.

1.2. Statement of the problem.

(1). Given the response X as a function of the y;,5 = 1, 2, - -+ n,

(1.1) X =hy) =h(y, ¥z, , Yn),
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MULTIPLEX SAMPLING 1323

where h is continuous and may be known either analytically or experimentally
and an exact numerical value of X is uniquely determined by a set of values of
the Y5 .

(2). Given for each j = 1, 2, - -+, n, that y; will be taken to have one of the
r(§) given density functions

(1.2) di = {w;(1; y5), wi(2; y5), -+, wi(r(§); yi)}

(the jth component is available in corresponding distributions in the tolerancing
problem), and that the y;,j = 1, 2, - - -, n, are statistically independent random
variables.

(3). Given that a particular family of distributions is denoted by

(1.3) ﬂ:{il,ig’--uin}, léijér(.?)’ j=1’2’...,n,

.-+, n; the range of 8 is the Cartesian
-+, n; there are

L 7(5)

J

where y; is from w;(4;; y;),J = 1, 2
product of {17 2, -, T(J)})] =12

(1.4) r

different B’s.

(4). Find the desired characteristics of the response X as a function of 8 by
an efficient sampling procedure. The concept of an efficient sampling procedure
will be made precise. The characteristics, or, as we will call them from now
on, the parameters, which will be considered explicitly here are the average of
X, the variance of X, and the probability that X is within a given set; other
parameters could be considered.

Since we are only considering the case where the y; are statistically independent
random variables we use

)

(15) w(g;y) = M), = @, ve, o5 9a)

and at times we take the liberty of expressing the range of Bas 1 = 8 = .
The y; will be treated as real random variables for convenience; this convention
does not rule out, however, the possibility that they may be vector quantities.
1.3. Relation to usual and complementary methods. In order to measure the
efficiency of multiplex sampling we must compare it with a more usual proce-
dure. For the purposes of the paper we define the usual method (perhaps some-
what unfairly) as follows: First choose a particular 8, draw a random sample of
size Mg where the size depends on the desired precision, and then estimate the
desired parameters. To obtain estimates for all 8, follow the same procedure r
times. Note that we allow the use of standard Monte Carlo variance reducing
techniques so long as they are also applicable in multiplex sampling; the important
difference is that there be r samples. Then, the total number of observations
required is
(16) Tusual = Zﬁ Mﬂ .
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Multiplex sampling is a method for estimating the same parameters with at
least the desired precision by drawing only a single random sample of size N.
It is accomplished by sampling from a fictitious distribution which is best under
criterions to be adduced and then using weighted sampling formulas for all 8
of interest. The efficiency of multiplex sampling is measured by comparing
N toT.

Asnoted, in multiplex sampling weighted sampling formulas are used to calculate
the parameters; these essentially make the fictitious distribution from which the
sample is drawn look like any another distribution of interest [8], [9]. The one
sample is used to make the calculations for several distributions of interest [9].
Of course, these techniques are standard in Monte Carlo work as is the selection
of the optimum fictitious distribution for the case of a single 8 [8]. The contribu-
tion here is the selection of this distribution when all 8 are of interest. In finding
this distribution the standard Monte Carlo variance reducing device of introduc-
ing a tractable function Z = ¢(y), which approximates the function X = h(y),
in addition to h is used [8]; there is a reason for explicitly considering it, see
Section 3.5 and also [6]. As implied above, however, other well known Monte
Carlo devices [2] (especially [8]) may be used in addition; their applicability
will depend on the specific problem. ,

A fundamental assumption underlying the applicability of multiplex sampling
is that the functions involved are either unknown analytically, or so intractable,
or the like, that an experimental sampling approach is dictated. If the function
h is tractable, one can use Tukey’s nonlinear propagation of error formulas [11],
[12] and [13]; of course, in the simplest case when h is at least approximately
linear the classical propagation of error formulas are adequate.

2. Response statistics.

2.1. Estimators for parameters of the response. We require weighted sampling
formulas; we derive them in order to have them in the desired forms. Define a
fictitious distribution with known probability density function p(y); for now p
is arbitrary, and its efficient choice will be taken up in Section 3. Draw a random
sample of size N from this distribution; let y° denote the sth obsel.'vau;ion.2 For
each 3’ there is an X; by (1.1). Further calculate w(8; y°) and p(y°) for the ith
observation and define the weights

(2.1) 2:(8) = w(B; y")/p(y").

These depend on both the value of y° and g.
As noted in Section 1.3 we find it especially useful to use an approximating
function. Let us choose a function

(2.2) Z = g(y)

which approximates the funetion X = h(y) in the range of interest; g does not

2 A superscript must be used to denote the sth observation of y since the subsecript has
been preempted; subscripts are used for this purpose elsewhere in this paper.
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replace h, they are both used. Assume that g is continuous, and, for simplicity of
exposition, that we have an analytic expression for it. We require that the chosen
g be sufficiently tractable so that the mean and variance of Z can be computed
relatively easily for each w(8; y); let a,(8) and a.(8) be the mean and variance
for each B, respectively. For each y* calculate the Z; from (2.2).

Using the above, estimators of the mean and variance of X when y is dis-
tributed according to w(B; y) are

Mean
(2.3) m(B) = (1/N){ ; (Xi — Z:)qi(B)} + as(B).

Variance
o0 my(8) = [1/2N(N — D)X > [(X: — X,)* — (Z: — Z,)"10:(8)q:(B)}
24 v

+ o3(B),
= [I/N(N — DI{ 2 ¢;(8) 20 (X7 — Zlg:(B)

(2.5) J ¢

- [ZiXiqu)F + [; Zq:(B)Y} + o3(8),

where all sums are from 1 to N. The second expression for mz(8), (2.5), is only
an algebraic transformation of the first; the second is the form used for numeri-
cal computations.

2.2. Properties of the estimators. It can be shown easily that m(8) and m(B8)
are unbiased estimators. In doing so, one must remember that all averages must
be taken with respect to p. The variances of the estimates are:

var m(8) = 14 [ () = 96 lp ™ dy

(2.6)
— lag) — ag<ﬁ>]2},

var ma(®) = &4 [[] 18hGa, I = laga, 17
(27) [an(z, 2)[F — |Aag(z, 2) 1w’ (8; 2)[p(2)] ™
(85 )33 2) di dy bz — 415'(8) — SB)F} + O(1/N,
where

(2.8) Ah(z, y) = h(z) — h(y), Ag(z,y) = g(z) — g(y),

and a(B8) and ¢°(8) are the mean and variance of X. These calculations are
straightforward; the O(1/N”) term in (2.7) arises essentially from dropping an
integral. All the above integrals will be assumed to exist.
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From the simple version of the Central Limit Theorem (Theorem 17.4 in
[4]) it is easily seen that m(B) is asymptotically normally distributed for large
N with unbiased mean and variance as above. The proof that m,(8) is asymp-
totically normally distributed is more difficult and one must appeal to the
asymptotic normality of functions of moments (Theorem 28.4, [4]); the proof
will not be reproduced here since it is only tangential to the main ideas of the
paper.

2.3 Mean value forms for the variances. For use in Section 3, let us note that
because of the assumed continuity of 7 and g, from the mean value theorem of
integral caleulus, it follows that

(2.9) var m(B) = (1/N){|h — glsQs — (3as)’},
where

(2.10) dag = a(B) — a,(B),

(2.11) & = [ w8 W dy,

and ,

(2.12) b — gls = |h(ys) — 9(ys)]’

where 3 is some point in the range of integration; ys depends on p(y) and on 8
thru w(B; y). Similarly

(213) var m(B) = - (1ah]* — |agl%h Qs — 4(a0)),
where

(2.14) do = o"(B) — a3(B),

and

(2.15) [|ah* — |aglls = ||AR(zs , y) " — Ag(zs , ys) %,

and x5, ys are points in the range of integration and terms of O(1/N*) are
dropped. Here, the simplified form of the mean value term (2.15) does not come
directly from the mean value theorem, but can be obtained by exploiting the
positivity of the variance and the required continuity of 4 and g. For the class
of p functions we will be interested in, it can be shown that Qs always exists.

2.4 Other parameters. Other parameters besides the mean and variance of X
can be used with multiplex sampling. In particular, one which has been con-
sidered is Pg(B), the probability that X is in the set S. The estimator is the same
as (2.3) with X; and Z; replaced by ¢(X;) and ¢(Z;) where ¢ is the characteristic
function of the set S, and a,(3) replaced by the probability that Z is in the set S.
Because of the close functional relationship of the two estimators almost identical
results hold—including the results to be obtained—for the two statistics; the
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reasoning needs to be changed to obtain a form equivalent to (2.9) because of the
discontinuous nature of ¢.

3. The efficient choice of p.

3.1. The effect of p. Throughout the preceding Section the function p was an
arbitrary probability density function except for the mild constraint imposed
by requiring that certain integrals converge. Assuming that the parameter under
consideration exists, this constraint only requires essentially that p(y) not
be zero when w(B; y) > 0, all 8, and that p go to zero for large |y| no faster than
the slowest of the w’s. In dictating our approach, these are minor considerations.

The major considerations influencing the choice of p are: (1) the ease of
producing random variables according to the distribution defined by p, (2) the
size of the random sample, N, required to achieve a desired precision. As will
be seen, these usually work against each other; that is, the most efficient p under
(2) may necessitate such a complicated sampling procedure that the extra work
involved in sampling more than offsets the work saved by minimizing the sample
size. The balancing of (1) and (2) is important, but because (1) is not amenable
to a precise mathematical definition, the optimum p depends on the interpreta-
tion selected. In the following sections the.conditions on p, i.e., the conditions
under which a minimization is carried out, will be changed. The first will be for
optimum p from the viewpoint of minimizing N (for prescribed precision of the
estimate) without regard to how difficult it is to construct the associated distribu-
tion. In successive steps the conditions will be changed with the idea of making
it easier to realize p as a distribution at the expense of increasing N.

Two criterions are used to choose the optimum p; for the various relaxations
of the requirements they must be adapted somewhat but essentially they are
the following (stated only for the mean m(g)).

Criterion A: Given v1, ¥2, **+ , vr, where v; = 0, D_:v: > 0, choose p such
that > svs var m(8) = minimum.
Criterion B (minimax criterion) : Given %, , k2, - - - , k., where k; > 0, choose

p such that maxs [kg var m(8)] = minimum. The %’s in Criterion B define ¢nter-
relationships among the var m(8) in a precise manner; thus, if maxg [ks var m(8)]
= B/N for a particular p and N, then for every 8, var m(8) < B/Nks. B is
made as small as possible by choosing an optimum p; then at least the desired
precision is realized for every 8 by making N sufficiently large. It will be seen that
the 4’s in Criterion A also define ¢nterrelationships among the var m(8), but that
the interrelationships are only qualitatively stated, i.e., for the optimum p it
turns out that the larger v; is relative to the other ;, the smaller var m(g3)
is relative to the other var m (7). Again N may be adjusted separately to realize
the desired precision. On the other hand, it will be seen that the implementation
of Criterion A is relatively easy while the implementation of Criterion B is, in
general, very difficult. One of the important results of this section will be to
show that both criterions, through all their adaptations, lead to the same func-
tional form for p.
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3.2. The most efficient choice of p. Here let us consider only m(8) and g = 0,
for simplicity, then from (2.6)

(3.1) varm(8) = (/M@ — ¢@®)),  B=1,2+,m,
where
(32)° @ = [ B O dr.

Applying Criterion A gives a simple isoperimetric variational problem. Define

G(p) = Xﬁ: v var m(B8) + vf p(¢) ds
(3.3)
= X e — @)+ [ p(0) ar,

where » is a Lagrange multiplier since p must be a probability density function®
Taking the first variation and setting it equal to zero gives

(34) $6(p) = 0 = — S [ s ) on &5 + v [ op ds.

Then

(3.5) p() = (/W) 120 v (33 )1’

where the normalizing constant u is

(36) b= () = [ BOIT 7w OF &.

Let us denote the @5 of (3.2) with p(y) as given by (3.5) and (3.6) as @, i.e.,

G = Q) = [ | bn) | 0" m) [Z v 0’ m] ™ d
F]
(3.7)
1R | I e w01 dr.
1
A relation of some importance which follows from the above is
(3.8) p = min, [35 Q] = X v:Qs.
7 %
3 The letter @ will be used in a somewhat ambiguous manner throughout this section;
that is, @ will be used to denote functionals which are not exactly the same functionals.

However, all the functionals denoted by @’s have common properties and the notation is
used to emphasize these properties.
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Next let us consider the behavior of Q; as v; is changed. One finds

aQ; _ l{[ [g—(% d;—]z

dv;i 2

(39)

By the Schwarz inequality the expression inside the brackets is negative.’
Hence

(3.10) 3Q;/0v; <0, 0=y

and Q; is a strictly monotone decreasing function of v;; obviously, so is
var m(B). The minimum value of @; is

(3.11) min Q; = [a()I, ¥ >0, wm =0, ks

where «(j) is the first absolute moment of A(x) when z is from distribution
w(j; «). The maximum value of @;, considered only as a function of v;, is
attained for v; = 0. '

Next consider the minimax ecriterion—Criterion B. Primarily, we want to
demonstrate that

(3.12) inf, {maxlgigr k{Q; — 02(")]} = min, {max 1gigr ki[Q-i(’Y) - a 2(2)]};

where on the left the @, are as in (3.2) and the minimization is over all probability
density functions, and on the right the Q;(y) are as in (3.7) and the minimiza-
tion is over all non-zero vectors v = (v1, v2, -+, v») With non-negative com-
ponents. There are two initial observations: Since p of (3.5) is a homogeneous
function of ¥ we may, for convenience and with no loss, consider only v satisfying

(3.13) viz 0, Dvi/ki=1, i=1,2 -,

Second, it is obvious that the expression on the left in (3.12) is less than or equal
to the expression on the right; hence only the converse conditional inequality
need be demonstrated. By Theorem 1, [7], for any v satisfying (3.13)

(3.14) max; k{Q: — a’(1)] = 2 viQ: — a’(9)].

The minimization over p of the right hand side of (3.14) for any v satisfying

(3.13) is the same isoperimetric variational problem considered above, (3.3)
4 It can be zero only if w?(j; y) = ¢ v,w?(j; y) where ¢ is a constant of proportionality—

see Theorem 18, p. 132, [7]. This is a degenerate condition and hence has been excluded from
consideration.
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through (3.7). Hence,
inf, {max; k]Q:; — a’(¢)]}

v

inf, {max, 2 v{Q: — a’(4)]}
(3.15) '
= max, Ziw[Qi(‘Y) — d'(3)].

To complete the proof, it must be shown that

(3.16) max, {;w[@(w — &’ ()]} = min, {max; k{Q:(v) — a*(?)]}.

First, from (3.6) and (3.8)
(3.17) M(v) = ¥'(v) — Eiwaz(i) = ;w[@(v) — a'(4)].

Adapting a theorem in nonlinear programming, [10], pp. 249f: Any +° that
maximizes M (v) subject to (3.13) must satisfy

(3.18) Bz kh| _hGG) — @), i=1,2,m,
a’Yi v°
and
(3.19) B=X+vM| — uy
[ i |yo

for some B. Using (3.18) and (3.19), in (3.16) the term inside the brackets on
the right when evaluated at v° is equal to the left hand side; hence (3.16) is

true.

In addition to demonstrating (3.12) under fairly general conditions, the above
has also demonstrated a dual i.e., the maximum of M (y) under (3.13) is equal
to the expressions in (3.12). The theorem used above, [10], also states that if
M (v) is strictly concave, then at most one v° satisfies (3.13), (3.18) and (3.19).
Let v' 5 % both satisfying (3.13) and set

(3.20) y=06/+(1—-0)y3 0<0<I,
which also satisfies (3.13). By Minkowski’s inequality®

2 = ([ 1S viwis0) + (1= 0) 00 01 i)
(321) > o([ 142 7wt 0F )

+ (1 =0 ( [ (20 7:w'(s; OF d() = 0’(Y) + (1 — 0)*(3).

Since M differs from u® only by a linear term M is strictly concave, also.

8 Theorem 198, p. 146, [7]. Equality is possible only if the w? are linearly dependent; we
exclude this degenerate condition from consideration, as before.
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The significance of the above, from the standpoint of finding the desired v°, is
that if one can find a v* such that either all £J{Q:(v*) — d’(4)] are equal to
some number, or for each exceptional 8 then ks[Qs(v*) — a’(B)] is less than that
number and v4 = 0, then y* is proportional to v° and the number is B. Further,
~* is a minimizing v in (3.12) and (3.12) is equal to B.

3.3. The case where p is independent of h. The results of the foregoing section
are satisfactory on theoretical grounds; however, in the practical case they are
generally useless. There are two objections:

Objection (1): p(y) as given by (3.5) is useful for a single variable. If one
replaces y by (41, ¥2, ***, ¥a), for any but the most trivial case, it is obvious
that it would be extremely difficult, if at all possible, to produce the required
random sample.

Objection (2): p(y) as given by (3.5) depends on the function 2(y) as a
funetion of y (or if g were included it would depend on [h(y) — g(y)]). Since
the formulas of Section 2 are predicated on the assumption that p is a probability
density function it is necessary to integrate (3.6) to obtain the normalizing
constant g, but since the basic assumption is that a Monte Carlo approach is
required, it would be a rare case indeed when it could be evaluated.

Objection (2) will be dealt with in the present section essentially as a prelude
to dealing with Objection (1) in Section 3.4.

We use the mean value expressions for the variances given in Section 2.3.
Now Criterion A cannot be applied directly to the sum of the variances when
the variances are in the form (2.9), for in the expression

(3.22) Zﬁ vs var m(B) = <1/N>{§ vellh — gls@s — (3ag)™]}

the | — g|s depend on p. However, since var m(B) varies directly with @, an
adaptation of Criterion A can be used.

Criterion A’. Given A, Nz, - -+, \, where \; = 0, D_\;> 0, choose p such that
> s vsQs = minimum. Using this criterion and applying the same variational
technique’ as before one finds

(3.23) p(y) = (1/#)[; yow'(B; )1,
where
(3.24) b= [N 0F a.

Now, what has been accomplished by the above? The principal benefit is that
p(y) as given by (3.23) is independent of [A(y) — g(y)], as a function of y.
In turn, the chance of performing the required integration (3.24) is much better
and the distribution is easier to construct (although Objection (1) still holds).
The disadvantage is, of course, that ), vg var m(g) is generally greater than its

8 There is a procedural hitch here which one must remove to be mathematically correct.
The results, however, are unchanged, see Appendix I.
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minimum value (obviously, it cannot be less than that given in Section 3.2), or,
equivalently, to obtain the same precision of estimate N, the sample size, must

be larger.

The correspondence between the v of Criterion A and the s of Criterion A is
(3.25) N = vs |h — gl5,
and, thus,

2o vsvarm(B) = 2 (1/N){vs |h — g|5Qs — vs(das)*}
(3.26) ° #
= (I/N)Zﬁ:)\ﬁ{Qﬂ — (8ag)*/|h — g3}

Hence Criterion A’ is a minimization” of the right hand side of (3.22) given the
s, and the vy; are the resultant numbers. However, the desired procedure is to
go from given vz to resultant Ag . In the theoretical case obtaining A\s from (3.25)
given the desired vz is difficult because | — g|3 depends on Ag through the
function p. However, in the practical case it does not impose any additional
difficulties since the |h — g|3 can only be approximations and thus the Ag can
only be approximations. Since the whole procedure is aimed at overcoming a
difficulty inherent in the practical case this is consistent.

Next, it is important to note that if one starts with the statistic m2(8), since
the expression for var ms(8), (2.13), parallels precisely the formula for var m(3),
the results will be identical. Thus, one can perform the Monte Carlo to de-
termine both m(8) and m.(B) at the same time and from the same distribution
p(y), although one may have to compromise on the choice of the \g used in p(y).

Now, let us consider the minimax criterion—Criterion B. The proper adap-
tation for this section is Criterion B'. Given ky, ks, - -, k, where k; > 0 find p
such that maxg[ks(Qs — Rs)] = minimum, where Rgis a constant and 0 = Rg < 1.

Completely analogous relationships exist between the Qs of this section and
the Qg of Section 3.2—simply set # = 1 in Qg . Hence the results carry over and
p satisfying Criterion B’ has the functional expression (3.23). Note that
min Q; = 1 now for \; > 0, \; = 0, [  j; hence the restriction on Rj .

Criterion B’ is not as theoretically satisfying as desired, nor can it be easily
made so. However, it is satisfactory for the practical case. The following is the
reason behind this statement: Set

(3.27) ks = kglh — gl3,
then

ks var m(8) = (1/N)ks{|h — gl5Qs — (bas)*}

(3.28) 2 2
= (1/N)ks{@Qs — (bag)’/|h — gls}.

7 See Appendix I for the precise sense.
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Thus, Criterion B is not theoretically satisfying because it sets
(3.29) Rs = (8ag)’/|h — g|§ = constant.

Obviously (3.29) is not true in general, but, also, carrying out the minimization
over the N’s when Rj is not constant would be extremely difficult.® However, in
the practical case where (éag) is not known and |h — g¢|3 is an estimate, choosing
Rjs equals some constant is a reasonable procedure. The easiest case to handle is
the one where (8as)’/|h — g3 is sufficiently small compared to Qs to be set equal
to zero. Of course, the same remarks hold in choosing «s from the desired kg as
did in the case of choosing the A\s from the desired v; .

Obviously, precisely the same result as above holds true if m»(B) is considered
instead of m(g).

Summing up, the results of this section are primarily acceptable, when y is a
single variable. Otherwise, for p(y) as in (3.23), if ¥ is a multidimensional
variable, even assuming one can carry out the integration to obtain u (which is
not easy in the one variable case), it would in general be quite difficult to con-
struct the distribution. If one can construct it then the results of this section
are applicable, if one cannot, the next section is appropriate.

3.4. The case where p(y) = ]]p;(y;). As a final concession to practical diffi-
culties it will be required in this section that

(3.30) p(y) = 2y, ¥2, " ", Yn) = Epf(yj).

The construction of a one dimensional distribution with density p;(y;) is a
straightforward and relatively simple procedure [3], [1] pp. xxii-xxiv, and thus
Objection (1), Section 3.3, is overcome. Under Condition (3.30) the expression
for var m(B) becomes

(3.31) var m(8) = (1/N){lh — gls IjIjS,' — (ap)*,

and for var m.(8)
(3.32)  var mo(B) = (1/N){||a]> — |agl3 I;IQﬁ,. — 4(805)"},

where

(3.33) B ={i,0, -,
and

(3:34) Qi = [ Wi OO ds

It is again sufficient to consider only var m(8) because of the parallel nature

8 See Appendix I, last paragraph.



1334 DAVID H. EVANS

of (3.31) and (3.32). In order to find adaptations of Criterions A and B which
are consistent with the constraint on p, it is necessary to turn the problem into
an essentially single variable problem. To this end, let the set of numbers
Yit, Yiz, *** , Viry Where vji = 0and D v;; > Obegiven forj = 1, 2, +c0 M.
Now for 8 as given by (3.33) define

<3°35) 6(]0 = {ll ) 12 y T if—l ) & ii+1 y T 'Lﬂ}
where ¢ is in the jth place, 1 < ¢ < r(j). Further, let

(3.36) vs(jit) = IlIm

where the prime indicates I  j. Form the sum

(3.37) E Yoo var m(B(j:t))

where ac” indicates the sum is taken over all combinations of the {i1,92, -+, %a}
with £ in the jth place. Expression (3.37) represents the variance of m(8) over
all possible assignments in which y; is distributed according to w;(¢; y;); it is
essentially a one variable form. Then

(3.38) Zt: m[aZc, Yoo var m(B(j:))]

corresponds, as far as the jth variable is concerned, to the thing which is mini-
mized under Criterion A’. Introducing (3.31) for var m(B) into (3.38) gives
an expression which is a weighted sum of the Q; . It follows than that the proper
adaptation of Criterion A is

Criterion A”. For eachj = 1,2, --- | n, given N1, Nj2, -+, Njrisy , Such that
Nii 2 0 and D ;A; > 0, choose p;(y;) such that D ;A\Q;; = minimum. Of
course, as before,

(3.39) pi(y) = (/)] ;kjwﬁ(i; NI,
where
(3.40) b= [ 15 Nl 001 a5

One can obtain algebraic expression for the \;; in terms of the other parameters,
of course. Clearly, if the ms(B) statistic is considered, the same p;(y) is obtained.

Next, looking at Criterion B, it is apparent that the same, essentially single
variable approach used to adapt Criterion A to Criterion A” will work again.
The result is

Criterion B”. Foreachj = 1,2, --- , n, given «;; > 0, choose p;(y;) such that
maxi[x;)(Qj: — Rj;)] = minimum, where R;; is some constant and 0 < R;; < 1.
Obviously, remarks analogous to the remarks following Criterion B’ of Section
3.3 are again applicable. In particular, it follows that the optimal p;(y,;) again
has the functional expression (3.39).
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3.5. Practical aspects. The most important result of the section is that the
expression for p(y) has been obtained for reasonable meanings of optimality
under constraints imposed by practical considerations. The application of this
result, and others, is the subject of another paper [6]; however, let us look at the
problem briefly: One starts with the premise that p be given by (3.30), (3.39)
and (3.40) and hence that the variances of m(B8) and m.(8) are given by (3.31)
and (3.32). For the moment, looking at the case where only one 8 is considered
and the random sample is drawn from a distribution with p(y) = w(B; y)—this
technique is called usual sampling in the Introduction—it is seen from (2.2),
(2.3), and (2.5) that our estimators reduce to the ordinary estimators and,
hence, that the ordinary estimators have variances given by (3.31) and (3.32)
with, however, @;;; = 1, all j. Clearly, then, the problem of achieving preset
levels of precision for the estimates is, in principle, no different for multiplex
sampling than for usual sampling. The chief difference is that the A;—which
determine the Q;,—must be chosen to achieve the desired relative levels of pre-
cision. The approximating funetion g can be helpful in this respect, for, in ad-
dition to the fact that it is a variance reducer, it tends simultaneously to induce
a uniformity condition, viz, a well chosen g is such that

Ih — gz ~ Ki, all 8,

3.41
B |laR* — [ag; ~ Ko, all B.

A well chosen ¢ simplifies the practical procedure enormously.

4. Evaluation of multiplex sampling.

4.1. Some preliminary definitions. In the following, to show that a quantity
depends on 8 and that usual sampling is implied—but only where the latter fact
may make a difference—the compound notation Bu will be used. For example,
Mg, is the sample size in usual sampling for y distributed according to w(8; y);
on the other hand, a(B) is always used for the mean since a(8) = a(Bu).

To compare multiplex sampling and usual sampling, at first only for m(g),
let k5" be the preset requirement on the precision of the estimate. Thus, from
Section 2.3 since Qg, = 1 (see Section 3.5) for usual sampling, the requirement is

(4.1) k3t = varm(Bu) = (1/Mg)[|h — glsu — (3a5)’], all 8,

where Mg, has been adjusted to achieve equality. For multiplex sampling, since
equality is not always possible for any specific 8, the requirement is

(4.2) ks' = varm(8) = (1/N)[h — gl5Qs — (3a5)’], all ,
where Qg is given by (2.11). The ratio of the total number of observations re-
quired in each case is

N _ maxgkdlh — gl Qs — (3a5)"]

C =
(43) > Mo S hellh — gli — (b’
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This is a general formula; to make it more tractable we take the case where g is
well chosen, Section 3.5. Under the circumstances we make the quite reasonable
additional simplifying assumption that

(4.4) |h — glg ~ |h — gz ~ K, all B.

Also, only the case where (3ag)”® is negligible compared to K will be considered.
Hence, (4.3) becomes

(4.5) C = {maxglksQs]}/ Xﬁ: kg .

The identical result is obtained for ms(8) under analogous assumptions and
what follows will hold for both.

The multivariable casey = (y1, * - ya) of Section 3.4 is of primary interest.
For p= H]'pi, (330)7
(4.6) ke = Ilkiy,  Qo=1I1Qw,  B=(a, -, ).
J J

Thus (4.5) becomes

r ()

(4:7) C = H maxlstsr(y) ]tQ]t E k]z .

This result has been arrived at under a set of reasonable assumptions; indeed, in
any practical application of multiplex sampling these are the assumptions one
would ordinarily strive to make possible. Here, we take (4.7) as the definition
of the measure of the over-all effictency of multiplex sampling as compared to
usual sampling in the multivariable case. For the investigation in this section
we will be content to compute only a single term in the product (4.7); the fact
that (4.7) is a product should be remembered, however. Also, we consider only
the special case in which the k;:, ¢ = 1, 2, .-+, r(j), are all equal. Thus, the
definition reduces to

(4.8) C = max, [Q;d/r(5);

the smaller C, the more efficient the process.

The ratio (4.7) can be computed for any p = [[;p,, (3.30), but, in particular,
Section 3 has shown that the p; of interest are given by (3.39). There is an
arbitrariness in the \j;, t = 1, 2, --- , r(J), (see the discussion following (3.26)
and also [6]) to be investigated, which leads us to another kind of efficiency
— an internal efficiency. The measure of the internal efficiency should
compare the sample size required by the set of \;; under investigation to
that required by an optimum set which, from (4.7), could be accomplished for
each j by comparing max.[k;Q;] evaluated for the set of \;; to its minimum
value. But in general it is very difficult to find the minimum value, so this
definition is not useful. It has been shown in Section 3 that the minimum is
realized if k1Qn = kpQp2 = -+ = kj»Qiry—when equality is possible—and
that any departure from the minimum is reflected in the disparity of the sizes
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of the k;,Q;; . Here, we will be interested only in the case 7(j) = 2 and kj; = k;2,
and, hence, can take the measure of the internal efficiency as

(4.9) D = Qu/Qj2 .

The choice of the Aj; is optimum when this ratio is unity; any departure from
unity, up or down, indicates inefficiency.

In order to carry out the investigation into these efficiencies it is necessary to
go to special distributions and to develop some machinery.

4.2. The uniform distribution. The only set of densities w;(¢; x;),t = 1,2, - -+,
r(7), that I know for which the required integrations can be performed without
undue difficulty is the set of uniform distributions. Let us simplify the notation
in a manner consistent with the single variable approach of Section 3.4 and the
present: drop the j from y;, Qj:, pj, ui, r(4), wi(t; ¥;), Nj¢, and k;; from the
appropriate definitions and formulas in Section 3.4. The equations to be used
here become

(4.10) @ = [ Wi 0/p®)] d, t= 1,2,
(a11) b= [ w0l a,
(4.12) p(z) = (1/;»)[29 Naw'(4; )],

The set of uniform distributions to be investigated are those with mean zero and
are defined by

(4.13) w(t; ) = {(1’,/|2€th ,>[x0|“’< @i t=1,2 -,
where
(4.14) O=a<u<ae<- - <La.
One finds that
k= (o= [ S| + @ aw[Saa]
(4.15)

r 3
Fot @ a) [EE] o - e,
and

@ Q = @11 Qi1 + {u(at — @) / [g M/af]*},

(4.16)

Thus, given the N’s the @’s can be found.
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The converse problem of being given the desired @:, ¢t = 1, 2, -+, r—or,
more precisely, being given the desired ratios among the @,’s—is the more im-
portant problem. This is embodied in Criterion B” of Section 3, which is re-
copied here, for convenience.

Criterion B”. Given ki, ks --- k.such that k; > 0, choose p such that
maxk,(Q; — R;)] = minimum where the B, are constants and 0 < R, < 1.
For the case now being considered R, = 0, for all .

In Appendix II the realization of Criterion B” for the uniform distributions
with mean zero is accomplished for general k;, and, while the realization is not

difficult, it is tedious. For use in this Section, for &y = ke -+ = k, = 1—for
which it is shown in Appendix II that
(4.17) Q== - =0=Q

is always realizable—the A; are given by
A= af/(ai + ai—l)2 - a?/(ai+l + ai)z, 1= 'i; 2, - r— 1,
)\r a?‘/(ar + ar—l)z-

4.3. A suggested approximation to Criterion B”. For the uniform distribution
(4.13), o is proportional to a; where o7 is the variance of y distributed according
to w(t; y); thus, one is led to expect that for families of distributions which re-
semble the set of centered uniform distributions, a; may be replaced by o; to
obtain approximate formulas for the N’s. It is understood that the ¢’s are ordered
such that

(4.19) n<o< - <og.

This is only a suggested approximation. No relations have been found which
put a quantitative measure on the word ‘resemble”. A partial check on this
approximation will be given when we consider two triangular distributions. It
will be seen that the approximation is excellent for this specific example.

4.4. Comparison for two distributions. The remainder of this section will be
devoted to the purpose of justifying multiplex sampling from the standpoint of
showing a significant reduction in the number of observations required when
compared to the usual method applied over and over again. In this section we
will examine the effect of the disparity of the ranges or “widths” of two distri-
butions on the efficiencies; in Section 4.5 we will examine the effect of interpo-
lating distributions on the over-all efficiency, only.

Here we will examine the efficiencies for two uniform distributions—(4.13)
with r = 2—and the efficiencies for two triangular distributions

. _ (1 - [a:]/a,)/a,, 0 é |:c| < a;, _
w(t; z) = {0, | > a., t=1,2.

(4.18)

(4.20)

Define
(4.21) p = a/ay, p > 1;
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all the results will be plotted against the parameter p. Since only the relative
sizes of Ay and \; are important, it is convenient to normalize to

(4.22) )\1 = ]., )\2 = )\.

What values of A do we wish to use? Certainly we would like the result for the
optimum \, which is

(4.23) A=0p/(p+2)

for the uniform distributions by (4.18), i.e., for this choice @; = @, . For the
triangular distributions the optimum X is not known; the suggested approxi-
mation from Section 4.3 gives the same value for \ as (4.23). Finally, to get
some idea of the effect of the choice of \, we will also use the value A = 1; it is
a natural choice to examine since this choice gives equal weights to w(1; x)
and w(2; z). @ and Q. are easily calculated from (4.15) and (4.16) for the
uniform distributions, and they are calculated from the basic formulas (4.10)
thru (4.12) for the triangular distributions; the results are shown in Figure 1.
There are a number of important observations about the behavior of the
curves. The measure of over-all efficiency is obtained by dividing the value given
on the appropriate curve, for any fixed p, by 2, (4.8). The over-all efficiency is

20 :
| —T A=l ]

1.9 —% : —
* [ A=P[(P+2)
18 1 L1 |

' UNIFORM sz MAX. (Q), Q)

1.7 ? /// 1 Ql QZ

avrPs
/]

:: / // <L TRIANGULAR
14 / //// d
L / 4

i: / //féé | TRIANGULAR
11 //// = \A\FL a'e

T~ A-l

1.0 - “== A=p/(P+2) ]
UNIFORM
0.9
0.8
1 2 3 4 5 6 780910 15 20 30 40 %
p

Fia. 1. Measures of efficiency as functions of p for the four cases of Section 4.4. For the
upper curves the ordinate is max (@: , ;) and the measure of over-all efficiency is C = max
(@1, @2)/2. For the lower curves the ordinate is the ratio D = Q1/Q, , the measure of internal
efficiency.
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high for p small while up around 10 or 20 the saving is insignificant, as is to be
expected. In the neighborhood of p = 2—which is a common value in practice
in statistical tolerancing, e.g., see [6]—the savings are significant for all distri-
butions, varying from a low of about 55% up to a high of about 80% . I believe
that this shows that multiplex sampling is worthwhile. Next, looking at the
internal efficiency, the approximation N = p/(p 4+ 2) is excellent for the tri-
angular distributions. One sees that @, differs from @, by just a little over 4%
at the worst, which for practical purposes would make the precision of the
estimates for the two triangular distributions identical. However, even if equal
mixtures of the two distributions are used, i.e., A = 1, the precision of the
estimates are not completely out of line; unfortunately, the difference is most
serious in the neighborhood of p = 2. Finally, comparing the uniform and tri-
angular distributions for like values of A, for both A = p/(p + 2) and for A = 1
the curve max[Q; , @] for the triangular distributions lies well below the curve
for the uniform distribution.

4.5. Interpolating distributions. It is heuristically evident that the maximum
benefit of multiplex sampling is realized in interpolation. For a quantitative
indication, consider the special case of r uniform distributions with mean zero,
where the extreme distributions have half ranges a, and a, and each intermediate
distribution has a range which is the geometric mean of its nearest neighbor
distributions, i.e., set

(4.24) a; = 6a; = 0" 'y, j=1,2 --,r
and, as before,

(4.25) o= afa, p>1,

and, thus,

(4.26) g = oD,

Taking the case Q; = Q(r),j = 1,2, --- ,r = 2, from (4.18) it is found, after
a suitable normalization, that

M= 00 4 2)/(6° — 1),

(4.27) A =1, t=2,8 - ,r—1,
\o= 6%/(6° — 1).

From (4.15) and (4.16), after some algebra, one finds that

r(0—1) +2 _ e — 1] + 2
o+ 1 P T

The expression for @ holds for all » = 2 and for p > 1. The limiting form for @
as r increases without bound is

(4.29) limeo@(r) = Q( ) = 1+ 3 logp.

(4.28) Q(r) =




MULTIPLEX SAMPLING 1341

24
Q) Q0
23 Q@

2:2 //// Qo)
a

20 Vi

19 /4 QR
18 —

17 il ad

16 /
15 /
14
13
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p

Fi1g. 2. Measures of over-all efficiency as function of p for cases of Section 4.5. For the
upper curves the ordinate is @ and the measure of over-all efficiency is Q(r)/r where r is
the number of interpolating distributions. For the lower curve the ordinate is the ratio

Q(=)/Q(2).

The results have been plotted as a function of p in Figure 2. By (4.8) the numbers
given in Figure 2 are to be compared with r to determine the over-all efficiency
of multiplex sampling. These curves speak eloquently for interpolation as does
the limiting form for large », also.
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APPENDIX I

Criterion A’ is applied against the Q’s which were obtained through the mean
value theorem to get (2.9); strictly speaking this procedure fixes p and precludes
varying it under the integral sign as was done in applying Criterion A’. Actually
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we could argue around this objection easily, but it is instructive to sketch out a
direct attack. First we define by some suitable set of restrictions a class C, of ¢
functions such that C, contains p as given by (3.23). There exists bounds
[h — glsa such that

1

(1) var m(8) = & {[h — glaa @ — (3ap)*},

where Qp is defined by (2.11), for all p in C, . For the N’s given in Criterion A’,

(2) ]i\f; M(Qs — (535)*/Th — glte) = Zﬂ Ns/Th — glgal var m(B).

Choosing p such that the left hand side is a minimum is precisely Criterion A’
since the second term in the sum is a constant. This p is given by (3.23) because
we required that it be a member of C, ; note that it is ¢ndependent of the bounds.
Obviously [ — g[g. = |k — g|3 , where |h — g|§ is as in (2.12) with pasin (3.23).

The above is true for every suitably restricted C, containing p given by (3.23).
Considering all such C, and taking the infimum over all bounds

i (min [ {32 M(@s — )"/ T3] )
(3) ’
= LN~ Gan)/h — o) = 5 Dw/lb — gl var m(®)

Thus, we see that Criterion A’ corresponds to a two stage minimization process.

The analogous procedure cannot be carried through for Criterion B’ because
the last step fails if Rg is not taken as a constant since then p depends on the
bounds. Of course, with the approximation Rg independent of p everything goes
through.

APPENDIX IT°

Using the results of Section 3, p satisfying Criterion B is given by (4.12).
First we invert (4.16); thus,

r 1 _
(1) [Z M/af:' - e Gy t=1,2,---,r;, @ =0.

i=t ai Q¢ — ai_, Qt—l’

Since the left hand side must be non-negative and finite the €’s must satisfy the
restriction

(2) aiQ: > ai1Qu, t=1,2 -,

Squaring both sides of (1) and subtracting from the expression using ¢ the ex-
pression with ¢ replaced by ¢ + 1,¢ = 1,2, ---, r — 1, gives (after dropping

9 The results here will be only for B¢ = 0;it will be obvious how to handle the case R, > 0.
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the factor of proportionality)

2 2

Nl = G aa) (G = a) [ =1,2, - ,r — 1

(3) /a (a? Qi — ai— Qi—r)? (0341 Qi1 — @ Qi)2’ ¢ T " ’
x/a2 — (ar - a/r—l)2

(df Qr - az—l Qr—1)2 )
Again, since the N’s must be non-negative, the @’s must satisfy

(a; — ai—l)2 > (ai+1 - di)2
(03 Qi — ai_1 Qi) ~ (@31 Qia — 0} Qi)*°
Since all the terms inside the parentheses are positive (cp., (2) and (3)), the
terms may be unsquared. One can then obtain the continued inequality

(4)

2 2 2 2 2
0<d1Q1_§sz2—alQ1§G3Q3—Q2Q2§
a QG — 0 az — Qg

(5)

2 2 2
< G Qr1 — Gr—2 Qrs < O Q- — ai—l Qr .

Qr—1 — Or—2 Qr — Qr—1

The zero may be appended at the left because ¢, and/or a; equals zero is non-
sensical; thus (5) supersedes (2). (5) is the test to determine whether or not,
for a given set of Q;, a set of \; exists; if it does exist they are given by (3).
Now let us use (3) and (5) to find the N’s under Criterion B”. First, take the
simplest case; assume that the k’s are such that ’s can be found satisfying

(6) mim [maxz(szz)] = B = k1Q1 = szz = e = err-
Then (5) becomes

af/k1 < a%/kz — ai/ky < as/ks — a3/ks <

0 < = = = °*°°
ay Qs — 1 Gz — Q2
2 2 2 2
(7) < ai/ki — a;_1/kis < aiy1/kiyy — ai/k; < ...
A — Gi—1 Qit1 — Qi
2 2 2 2
< ar—l/kr—l - ar—z/kr—2 < ar/kr - ar—l/kr-l
QAr—1 — Qr—2 - ar — Qr—1

In order for (6) to be true (7) must also be true; if (7) is satisfied, then, from
(8), the essentially unique set of N’s is given by

I (@i — @)’ _ (@i — )’ s
N C/E Y e o e
)\ /a2 — (ar - ar—1)2

(a}/kr — aF—1/kr1)*
This takes care of the case when (6) holds. What about the case in which not
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all the k.Q; are equal? Actually, as will be seen, this has already been solved;
all that is needed is to put the various pieces together in proper relation. Recall
that it was found in Section 3 that if for any j

(9) kaj < B = minx [max,(sz,)], then )\j = 0.

The effect of this, i.e., \; = 0, is the same as if w(j; «) had never existed—with
one minor exception. That is, one deletes w(J; ) and pretends that he started
with the set of probability density functions w(¢; z),¢ = 1,2, --- , r, t 5 j, for
the purposes of computing u, @;, \;, ¢t = 1,2, -+, r, ¢ 3 7. The minor exception
is that there still exists a positive value for @, , this may be computed at the
end if it is desired.

In particular, the effect of the above on (7)—assuming for now that (9) is
true for only one j—is to rewrite it, in part, as

a5-1/kj1 — @—s/kje _ @ip1/kiys — ai1/kj

- = =<
Aj—1 — Aj—2 Qi1 — Aj—1
(10) R )
< aiye/kive — @j1/kip < ...
Gj+e — Gj+1
instead of
2 2 2 2
< @ia/ki — aja/kie _ ai/ki — aj/kia
- Oj—1 — Qj— @ a; — Qi1
(11) 2 2 2 2
< YG1/kis — ai/k; < @ita/kivs — @i /ki < ...
(2) Aj+1 — Qj (3) Qjre — Gjt1

Since the assumption for the present case is that it is not possible to find a set
of N’s such that the k.Q; are all equal and since the complete expression of which
(11) is a part tests whether or not a set of N’s can be found such that a specific
relation among the Q’s is possible, it follows that one or more of the inequalities
(1), (2), (3) must be violated. From (9) it follows that the given k; is too
small; it is patently impossible that the given k; be too large. Therefore, the
only inequality which is violated is (2); (1) and (3) are not violated. As a
corollary, note that

(12) kQ. = B

always. ((12) is obvious for another reason; A, = 0 implies @, = o, from the
definition of @,(4.10) and p (4.12).) The process of going from (11) to (10) will
be called collapsing the continued inequality. The terms which are lost in the
collapsing process will be called deleted terms.

The above has supposed only one k,Q; < B. For two non-consecutive kQ < B,
eg.,in (11) 7 — land 7 4+ 1 and with 7 — 2, 7, 7 + 2 all satisfying equality,
the results can immediately be seen to be no different, i.e., only the inequality
with the 7 — 1 terms appearing on either side and the inequality with the j + 1
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terms appearing on either side are violated. The same result holds for any number
of non-consecutive terms, regardless of the spacing.

For consecutive terms such that kQ < B, e.g.,in (11) j — 1, 7,7 + 1 with
J — 2,7 + 2 satisfying equality, the results are straightforward but quite possibly
more laborious. In the example cited, (11), any combination of the five in-
equalities shown may or may not be violated (e.g., kj_; may be too small, but
k; may be much too small, ete.)—subject to the proviso that at least one must
be violated (otherwise k¥Q = B is possible). What then must happen is that
after (11) is collapsed about the offended inequalities one or more of the re-
maining inequalities must be violated unless all of the terms in question have
been deleted. The resultant continued inequality is collapsed again and so on
until all of the consecutive terms satisfying kQ < B have been deleted. The
above obviously holds for any allowable number of consecutive terms.

After all of the terms corresponding to k;Q; < B have been deleted by any or
all of the above processes and the ultimately collapsed version of the continued
inequality (7) is obtained, then the \; corresponding to the terms remaining
(i.e., the terms not deleted) in the collapsed continued inequality may be calcu-
lated from the collapsed version of (8). The collapsed version of (8) is obtained
as follows: Suppose the remaining terms are numbered, in ascending order,

(13) 0767”'7gyh;i7.7.7l7"'7Q7T'

For \;, replace a,—1 and k;_1 by a, and k; ; replace a;y1 and k.41 by a; and k; .
For \¢, a.—1 = 0. For \, replace a,—, and k,_, by a, and k, . For the deleted terms
the corresponding N\’s are, of course, zero.

An important special case of the set of centered uniform distributions under
Criterion B” is

(14) oy =ky = o =k = 1.

The continued inequality (7) is satisfied throughout because of the strict mon-
otonicity of the a; ; hence, no terms are deleted and (6) is satisfied. Thus (4.17)
and (4.18).
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