The Annals of Applied Statistics

Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering

Sylvia Frühwirth-Schnatter, Stefan Pittner, Andrea Weber, and Rudolf Winter-Ebmer

Full-text: Open access

Abstract

In this paper we study data on discrete labor market transitions from Austria. In particular, we follow the careers of workers who experience a job displacement due to plant closure and observe—over a period of 40 quarters—whether these workers manage to return to a steady career path. To analyse these discrete-valued panel data, we apply a new method of Bayesian Markov chain clustering analysis based on inhomogeneous first order Markov transition processes with time-varying transition matrices. In addition, a mixture-of-experts approach allows us to model the probability of belonging to a certain cluster as depending on a set of covariates via a multinomial logit model. Our cluster analysis identifies five career patterns after plant closure and reveals that some workers cope quite easily with a job loss whereas others suffer large losses over extended periods of time.

Article information

Source
Ann. Appl. Stat., Volume 12, Number 3 (2018), 1796-1830.

Dates
Received: September 2016
Revised: December 2017
First available in Project Euclid: 11 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1536652975

Digital Object Identifier
doi:10.1214/17-AOAS1132

Mathematical Reviews number (MathSciNet)
MR3852698

Keywords
Transition data Markov chain Monte Carlo multinomial logit panel data inhomogeneous Markov chains

Citation

Frühwirth-Schnatter, Sylvia; Pittner, Stefan; Weber, Andrea; Winter-Ebmer, Rudolf. Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering. Ann. Appl. Stat. 12 (2018), no. 3, 1796--1830. doi:10.1214/17-AOAS1132. https://projecteuclid.org/euclid.aoas/1536652975


Export citation

References

  • Aitkin, M. and Alfó, M. (1998). Regression models for binary longitudinal responses. Stat. Comput. 8 289–307.
  • Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. J. Amer. Statist. Assoc. 102 201–210.
  • Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49 803–821.
  • Bartolucci, F., Bacci, S. and Pennoni, F. (2014). Longitudinal analysis of self-reported health status by mixture latent auto-regressive models. J. R. Stat. Soc. Ser. C. Appl. Stat. 63 267–288.
  • Cadez, I., Heckerman, D., Meek, C., Smyth, P. and White, S. (2003). Model-based clustering and visualization of navigation patterns on a web site. Data Min. Knowl. Discov. 7(4) 399–424.
  • Couch, K., Jolley, N. and Placzek, D. (2010). Earnings impact of job displacement revisited. Am. Econ. Rev. 100 572–589.
  • Del Bono, E., Weber, A. and Winter-Ebmer, R. (2012). Clash of career and family: Fertility decisions after job displacement. J. Eur. Econ. Assoc. 10 659–683.
  • Dias, J. G. and Vermunt, J. K. (2007). Latent class modeling of website users’ search patterns: Implications for online market segmentation. J. Retail. Consum. Serv. 14 359–368.
  • Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363–375.
  • Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed. Oxford Statistical Science Series 25. Oxford Univ. Press, Oxford.
  • Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed. Wiley Series in Probability and Statistics: Texts and References Section. Wiley, New York. With 1 IBM-PC floppy disk (3.5 inch; DD).
  • Eliason, M. and Storrie, D. (2004). The echo of job displacement. ISER Working Paper 20.
  • Fallick, B. (1996). A review of the recent empirical literature on displaced workers. Ind. Labor Relat. Rev. 50 5–16.
  • Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. J. Amer. Statist. Assoc. 97 611–631.
  • Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer, New York.
  • Frühwirth-Schnatter, S. (2011). Panel data analysis: A survey on model-based clustering of time series. Adv. Data Anal. Classif. 5 251–280.
  • Frühwirth-Schnatter, S. and Frühwirth, R. (2010). Data augmentation and MCMC for binary and multinomial logit models. In Statistical Modelling and Regression Structures (T. Kneib and G. Tutz, eds.) 111–132. Physica-Verlag/Springer, Heidelberg. Also available at http://www.ifas.jku.at/ifas/content/e114480, IFAS Research Paper Series 2010-48.
  • Frühwirth-Schnatter, S. and Kaufmann, S. (2008). Model-based clustering of multiple time series. J. Bus. Econom. Statist. 26 78–89.
  • Frühwirth-Schnatter, S., Pamminger, C., Weber, A. and Winter-Ebmer, R. (2012). Labor market entry and earnings dynamics: Bayesian inference using mixtures-of-experts Markov chain clustering. J. Appl. Econometrics 27 1116–1137.
  • Frühwirth-Schnatter, S., Pamminger, C., Weber, A. and Winter-Ebmer, R. (2016). Mothers’ long-run career patterns after first birth. J. Roy. Statist. Soc. Ser. A 179 707–725.
  • Frydman, H. (2005). Estimation in the mixture of Markov chains moving with different speeds. J. Amer. Statist. Assoc. 100 1046–1053.
  • Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference, 2nd ed. Texts in Statistical Science Series. Chapman & Hall/CRC, Boca Raton, FL.
  • Gollini, I. and Murphy, T. B. (2014). Mixture of latent trait analyzers for model-based clustering of categorical data. Stat. Comput. 24 569–588.
  • Goodman, L. A. (1961). Statistical methods for the mover-stayer model. J. Amer. Statist. Assoc. 56 841–868.
  • Gormley, I. C. and Murphy, T. B. (2008). A mixture of experts model for rank data with applications in election studies. Ann. Appl. Stat. 2 1452–1477.
  • Heckman, J. (1981). The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. In Structural Analysis of Discrete Data with Econometric Applications (C. F. Manski and D. McFadden, eds.) 179–195. MIT Press, Cambridge, MA.
  • Huttunen, K., Moen, J. and Salvanes, K. G. (2011). How destructive is creative destruction? Effects of job loss on job mobility, withdrawal and income. J. Eur. Econ. Assoc. 9 840–870.
  • Ichino, A., Schwerdt, G., Winter-Ebmer, R. and Zweimüller, J. (2017). Too old to work, too young to retire? J. Econ. Ageing 9 14–29.
  • Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat. 86 4–29.
  • Jacobson, L. S., LaLonde, R. J. and Sullivan, D. G. (1993). Earnings losses of displaced workers. Am. Econ. Rev. 83 685–709.
  • Jacobson, L. S., LaLonde, R. J. and Sullivan, D. G. (2005). Estimating the returns to community college schooling for displaced workers. J. Econometrics 125 271–304.
  • Juárez, M. A. and Steel, M. F. J. (2010). Model-based clustering of non-Gaussian panel data based on skew-$t$ distributions. J. Bus. Econom. Statist. 28 52–66.
  • Maruotti, A. and Rocci, R. (2012). A mixed non-homogeneous hidden Markov model for categorical data, with application to alcohol consumption. Stat. Med. 31 871–886.
  • McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of longitudinal data. Canad. J. Statist. 38 153–168.
  • Pamminger, C. and Frühwirth-Schnatter, S. (2010). Model-based clustering of categorical time series. Bayesian Anal. 5 345–368.
  • Pamminger, C. and Tüchler, R. (2011). A Bayesian analysis of female wage dynamics using Markov chain clustering. Austr. J. Stat. 40 281–296.
  • Peng, F., Jacobs, R. A. and Tanner, M. A. (1996). Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition. J. Amer. Statist. Assoc. 91 953–960.
  • Ramoni, M., Sebastiani, P. and Cohen, P. (2002). Bayesian clustering by dynamics. Mach. Learn. 47 91–121.
  • Ruhm, C. J. (1991). Are workers permanently scarred by job displacements? Am. Econ. Rev. 81 319–324.
  • Schwerdt, G., Ichino, A., Ruf, O., Winter-Ebmer, R. and Zweimüller, J. (2010). Does the color of the collar matter? Employment and earnings after plant closure. Econom. Lett. 108 137–140.
  • Shirley, K. E., Small, D. S., Lynch, K. G., Maisto, S. A. and Oslin, D. W. (2010). Hidden Markov models for alcoholism treatment trial data. Ann. Appl. Stat. 4 366–395.
  • Skrondal, A. and Rabe-Hesketh, S. (2014). Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity. J. R. Stat. Soc. Ser. C. Appl. Stat. 63 211–237.
  • Sullivan, D. and von Wachter, T. (2009). Job displacement and mortality: An analysis using administrative data. Q. J. Econ. 124 1265–1306.
  • Winter-Ebmer, R. (2016). Long-term effects of unemployment: What can we learn from plant-closure studies? In Long-Term Unemployment After the Great Recession (S. Bentolila and M. Jansen, eds.) 33–42. CEPR Press, London.
  • Wooldridge, J. M. (2005). Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econometrics 20 39–54.
  • Zweimüller, J., Winter-Ebmer, R., Lalive, R., Kuhn, A., Wuellrich, J.-P., Ruf, O. and Büchi, S. (2009). The Austrian Social Security Database (ASSD). Technical report.