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In this paper we study data on discrete labor market transitions from Aus-
tria. In particular, we follow the careers of workers who experience a job dis-
placement due to plant closure and observe—over a period of 40 quarters—
whether these workers manage to return to a steady career path. To analyse
these discrete-valued panel data, we apply a new method of Bayesian Markov
chain clustering analysis based on inhomogeneous first order Markov transi-
tion processes with time-varying transition matrices. In addition, a mixture-
of-experts approach allows us to model the probability of belonging to a cer-
tain cluster as depending on a set of covariates via a multinomial logit model.
Our cluster analysis identifies five career patterns after plant closure and re-
veals that some workers cope quite easily with a job loss whereas others suffer
large losses over extended periods of time.

1. Introduction. Long-term career outcomes after job loss due to a plant clo-
sure, where all workers are automatically displaced, are an often researched topic
in labor economics; see, for example, Jacobson, LaLonde and Sullivan (1993),
Fallick (1996), Ruhm (1991) or more recently, for Austria, Ichino et al. (2017).
Such a situation ideally allows us to observe how an economy absorbs exoge-
nous shocks and how individuals react to perturbations to their stable career path.
A plant closure has the advantage that displaced workers are neither predominantly
ones who are dismissed nor those changing jobs voluntarily; a plant closure is close
to an exogenous event where everybody gets displaced.

In the present paper, we study the evolution of career patterns after a job dis-
placement due to plant closure in Austria. To observe the full recovery process
after the employment shock, we follow workers over a period of 10 years. Using
administrative data from social security registers, we represent career patterns by
quarterly transitions between four different labor market states—being employed,
sick, out of labor force, or retired. A particular focus in our analysis is on hetero-
geneity in the career patterns due to observed or unobserved characteristics. The
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idea is that not all workers manage to return to stable employment paths after job
displacement, but that there are some types who recover faster or at slower rate
and some whose career pattern changes completely.

To capture the impact of unobserved heterogeneity on transition patterns, we
apply a model-based clustering approach to identify cluster groups with similar
career patterns after job displacement. The assumption is that the members of
each group react in a common (group-specific) way within the group, but dif-
ferently across groups. To identify cluster groups of workers that follow simi-
lar transition patterns in our data set, which is a collection of several thousands
of discrete-valued time series, we apply model-based clustering in the spirit of
Banfield and Raftery (1993), Fraley and Raftery (2002), Gollini and Murphy
(2014), McNicholas and Murphy (2010), among many others. A popular method of
model-based clustering of discrete-valued time series is based on separate Markov
chain models for the latent subpopulations; see Frühwirth-Schnatter (2011) for a
recent review. Under this approach, each subpopulation has group-specific initial
and transition probabilities of the Markov chain, which distinguishes it from frailty
models where a subject-specific effect for each individual is introduced [Diggle
et al. (2002)].

Typically, a time-homogeneous first-order Markov chain, characterized by
group-specific transition matrices, is assumed as a clustering kernel, implying that
the transition process within each cluster is stationary and reactions to a shock are
only temporary. However, for our data the transition process is not necessarily sta-
tionary over time, which poses a challenge to standard Markov chain clustering.
An obvious reason for nonstationarity are the shocks to the stationary transition
processes caused by an event out of the workers’ control, such as job displace-
ment. In this case the patterns of transition during the recovery phase may differ
significantly from stationary transitions, and we expect that after a plant closure
the intrinsically stable transition process of workers in and out of jobs might be
disturbed for a period of time. Moreover, individual transitions will be shaped by
changes over the life cycle—for example, when it comes to transitions towards
sick leave or retirement as workers age over time. To meet these challenges, we
employ a more flexible method of Markov chain clustering by introducing time-
inhomogeneous first order Markov transition processes with time-varying transi-
tion matrices as clustering kernels.

To capture the role of observed heterogeneity and to obtain a better understand-
ing of which workers in our data are inclined towards which career pattern, we
assume that time-invariant or predetermined characteristics of a displaced worker
may be correlated with group membership, that is, persons with specific observable
characteristics might be more likely to belong to a certain cluster than to the other
clusters. To this aim, we follow the so-called mixture-of-experts approach intro-
duced by Peng, Jacobs and Tanner (1996) and allow the probability of belonging
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to a certain subpopulation to depend on individual covariates.2 From a statistical
viewpoint, within a mixture-of-experts approach a multinomial logit model is ap-
plied to model the probability to belong to a certain cluster. In our application these
probabilities depend on predisplacement characteristics, such as the worker’s age
at job displacement, the years of labor market experience, the occupational type
(i.e., blue versus white collar) and the income in the quarter preceding the job
displacement.

To assess the effect of the job displacement shock on the change in career pat-
terns relative to a counterfactual scenario without plant closure, we aim at com-
paring the postdisplacement outcomes in each cluster group with a control group
of workers who do not experience a plant closure. This involves the identification
of a counterfactual group of nondisplaced workers for each cluster group based
on their unobserved characteristics. We propose a novel method to construct the
counterfactual career patterns that is based on the assumption that the full shock
of job displacement is captured in the distribution of labor market states in the
first quarter after displacement. This allows us to simulate group membership of
nondisplaced workers using the same clustering model that we estimated for dis-
placed workers.

Our empirical analysis leads to the following main findings. First, as applied
to our sample of displaced workers, the time-varying Markov chain clustering ap-
proach identifies five distinct career patterns after plant closure. The group-specific
career patterns reveal a variety of different shock-absorption mechanisms, which
are typically ignored in the literature. In particular, we find that almost 50% of
workers cope relatively easily with job displacement, whereas others suffer con-
siderable losses over extended periods of time. Second, modeling time-varying
transition patterns is crucial in our application, as the adjustment processes show
extensive variation by cluster group and over time. Third, using the time-varying
mixture-of-experts Markov chain clustering approach, we find that observable
characteristics are not evenly distributed across cluster groups, but individuals in
the different groups differ with respect to their observable characteristics. For ex-
ample, group membership strongly varies by age, occupation or earnings prior to
job displacement. Fourth, the comparison of career patterns of displaced workers
with a control group of workers who do not experience a plant closure shows that,
relative to the counterfactual scenario of nondisplaced workers, displaced workers
are less likely to be employed in the short run, but eventually employment rates
of both groups converge to each other. Again, we find important heterogeneity by
cluster groups.

2Successful previous applications of this approach include, among many others, model-based clus-
tering of rank data [Gormley and Murphy (2008)], model-based clustering of time series of continu-
ous outcomes [Frühwirth-Schnatter and Kaufmann (2008), Juárez and Steel (2010)] and model-based
clustering of discrete-valued time series [Frühwirth-Schnatter et al. (2012)].
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Our paper contributes to several strands of the literature. In the field of labor eco-
nomics, we contribute to the literature on the effects of job displacement and plant
closures. Typical studies in this literature examine either short-term or long-term
effects on employment or earnings and document that closing or downsizing plants
leads to large and long-lasting effects on employment rates and earnings [Couch,
Jolley and Placzek (2010), Huttunen, Moen and Salvanes (2011) and Eliason and
Storrie (2004)]. Other studies investigate related outcomes such as health, mortal-
ity, fertility [Del Bono, Weber and Winter-Ebmer (2012)] or spillovers to family
members [Sullivan and von Wachter (2009)]. Winter-Ebmer (2016) gives a sur-
vey of recent papers. There are no papers looking systematically at career patterns
or labor market transitions and, in particular, no paper deals with heterogeneous
effects in such transitions. While existing studies focus on average effects of job
displacement as well as the effect of heterogeneity by certain observable charac-
teristics, our paper reveals an important role of unobserved heterogeneity in terms
of the speed and type of labor market adjustment.

Our paper may also be instructive to the applied literature modeling transitions
between discrete states over time in fields other than labor economics. Discrete
transition patterns over time are of interest in many areas of applied research such
as demography, finance, mathematical biology or genetics. Examples of topics to
which these models are applied span a wide range—transitions between demo-
graphic states over the life cycles of individuals or households, transitions between
organisational characteristics, stock market participation or trading status of firms,
changes in climate conditions across regions over time or transitions of genetic
determinants over generations of different species. These transition processes are
typically captured by observations of unit-specific time series of discrete states
over time.

We further contribute to the literature on finite mixtures of Markov chain mod-
elling, where approaches similar to ours have been developed and applied in rather
diverse contexts, such as clustering website users [Cadez et al. (2003), Dias and
Vermunt (2007)], clustering sensor data from mobile robots [Ramoni, Sebastiani
and Cohen (2002)], bond ratings migration [Frydman (2005)] or clustering em-
ployees according to their wage dynamics [Pamminger and Frühwirth-Schnatter
(2010), Pamminger and Tüchler (2011)]; see also Goodman (1961) for an early
discussion of the closely related mover-stayer model. Alternative methods related
to our clustering approach in the context of longitudinal data are based on fi-
nite mixtures of hidden Markov models (HMMs), which were applied by Altman
(2007) to panels of count data, by Maruotti and Rocci (2012) to panels of cate-
gorical data, by Bartolucci, Bacci and Pennoni (2014) to panels of ordinal time
series and by Shirley et al. (2010) to a panel of alcohol consumption. While the
hidden Markov model captures heterogeneity along the time axis, heterogeneity
at the individual level is captured through an individual random effect with ei-
ther a discrete [Maruotti and Rocci (2012)] or a continuous distribution [Altman
(2007)]. Bartolucci, Bacci and Pennoni (2014) consider an extension where the



1800 FRÜHWIRTH-SCHNATTER, PITTNER, WEBER AND WINTER-EBMER

individual random effect follows a first-order Markov process. However, these ap-
proaches have some limitations in our context. While these models allow switching
between different states, marginally they imply a stationary process within each
cluster, whereas the time-varying Markov chain clustering approach is able to cap-
ture time inhomogeneity in the marginal distribution also within each cluster.

The paper proceeds as follows. The next section introduces the empirical prob-
lem and the data from Austrian social security registers. Section 3 discusses
the time-varying mixture-of-experts Markov chain clustering approach as well as
Bayesian statistical inference. Estimation results and implications for labor mar-
ket careers after job displacement are discussed in Section 4. We first comment on
model selection and posterior assignment of individual cluster memberships. Then
we interpret the different clusters of labor market transition processes and discuss
the relationship between cluster membership and observable individual charac-
teristics. Finally, we compare labor market trajectories of displaced workers with
those of a control group of individuals who do not experience a plant closure.

2. Data description. Our empirical analysis is based on administrative reg-
ister data from the Austrian Social Security Database (ASSD), which combines
detailed longitudinal information on employment and earnings of all private sector
workers in Austria [Zweimüller et al. (2009)]. The data set includes the universe
of private sector workers in Austria covered by the social security system. All em-
ployment spells record the identifier of the firm at which the worker is employed.

From the universe of employment records and employer identifiers, we can in-
fer the characteristics of a firm’s workforce at any point in time. Importantly for
our application, we can observe firm entries and exits. Specifically, we define a
firm’s exit as the point in time when the last employee leaves a firm. This is a
fully data-driven definition, which in some cases identifies employer exits that do
not correspond to a plant closure, for example due to a firm takeover or due to an
administrative reassignment of the employer identifier. In these cases, we observe
that a large group of employees continues their employment with a new identifier.
To get a more precise definition of plant closure, we therefore drop an observation
from the set of firm exits if more than 50% of the employees continue under a sin-
gle new employer identification number. As this method relying on worker flows
does not work well for firms with high seasonal employment fluctuations, we ex-
clude the construction and tourism sectors from our analysis. This leaves only a
very small number of seasonal workers from other industries.

For the definition of our sample of displaced workers, we concentrate on all
male workers employed during the years 1982 to 1988, who were experiencing a
job displacement due to plant closure in this period. Since we do not have infor-
mation on working time, we do not consider female workers in the present study.
We follow the displaced workers’ detailed labor market careers for four years prior
to job displacement and for 10 years afterwards. We further restrict the sample to
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workers displaced from firms that have more than five employees at least once dur-
ing the period 1982 to 1988 and to workers who have at least one year of tenure
prior to displacement. Moreover, we select workers who were between 35 and 55
years of age at the time of job displacement, leading to the analysis window being
located before the official retirement age of 65 years in Austria. This procedure
identifies 5841 workers displaced by plant closures between 1982 and 1988. (Our
panel is unbalanced, in the sense that we do not have 40 quarterly observations for
each individual. This is due to problems with merging observations from several
administrative subregisters to create the longitudinal careers. Section 3 explains
how our estimation procedure deals with unbalanced panel observations. A very
small number of 320 individuals die during the observation period. Quarterly ob-
servations after death are coded as retired, which we regard as an absorbing state.)

To compare labor market careers after job loss with a counterfactual situation
without job displacement, we extract a control group of workers who were em-
ployed during the years 1982 to 1988 in firms which did not close down. Our aim is
to select controls who are very similar to the displaced group in terms of their pre-
displacement labor market careers and observable individual characteristics. We
therefore apply the following selection procedure. We start with the entire popu-
lation of 1,087,705 male workers employed during the years 1982 to 1988 from
which we draw a weighted sample of 5841 workers, who are similar to the dis-
placed group in terms of predisplacement characteristics. Weights are constructed
based on a logit regression estimating the probability of being displaced in the full
set of displaced workers and potential controls [Imbens (2004)]. The ASSD offers
a rich set of covariates for this propensity score weighting procedure. In particular,
we control for employment and earnings information in the four years prior to job
displacement as well as age, occupational type, firm size and industry affiliation.
Sampling weights based on the logit model assure that the distribution of predis-
placement characteristics is similar among displaced and control observations.

To model employment careers, we proceed by constructing a quarterly time se-
ries of labor market states for each individual. Specifically, we define the following
categories: 1 denotes employed, 2 sick leave, 3 out of labor force (registered as un-
employed or otherwise out of labor force), 4 retired (claiming government pension
benefits). Retirement is coded as an absorbing state as virtually nobody in Austria
returns to employment once he/she enters the public pension system. These time
series of labor market states are the basis of our empirical Markov chain clustering
method.

To study characteristics that are correlated with different career patterns after
job loss, we focus on variables which are predetermined at the time of plant clo-
sure. The set of variables includes the worker’s age at job displacement, the years
of labor market experience, the occupational type (i.e., blue versus white collar)
and the income in the quarter preceding the job displacement. Moreover, we con-
trol for firm size and industry. To capture possibly nonlinear effects, we transform
all these variables into discrete categories; for summary statistics see Table 1.
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TABLE 1
Descriptive statistics for the control variables of all displaced

persons in the mixture-of-experts model to explain group membership

Worker’s age (in years)

Age 35–39 28%
Age 40–44 28%
Age 45–49 23%
Age 50–55 21%

Worker’s professional experience (in days)

Experience ≤ 1,675 days 33%
Experience from 1,676 to 3,938 days 31%
Experience ≥ 3,939 days 36%

Worker’s income at time of plant closure

Income in lowest tertile 14%
Income in middle tertile 32%
Income in highest tertile 54%

Firm’s attributes

Firm size ≤ 10 42%
Firm size from 11 to 100 41%
Firm size > 100 17%

Economic sector: service 31%
Economic sector: industry 32%
Economic sector: seasonal 2%
Economic sector: unknown 35%

White-collar workers 56%
Blue-collar workers 44%

3. Time-varying mixture-of-experts Markov chain clustering. As for
many data sets available for empirical labor market research, the structure of the
individual level transition data introduced in Section 2 takes the form of a discrete-
valued panel data. The categorical outcome variable yit assumes one out of four
states, labeled by {1,2,3,4}, and is observed for N individuals i = 1, . . . ,N over
Ti quarters for a maximum of 10 years, that is, Ti ≤ 40 quarters. Moreover, we
restrict ourselves to Ti ≥ 4. For each individual i, we model the state of the out-
come variable yit in period t to depend on the past state yi,t−1 through a time-
inhomogeneous first order Markov transition model.

To capture the presence of unobserved heterogeneity in the dynamics in our
discrete-valued panel data, we apply model-based clustering based on Markov
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transition models. The central assumption in model-based clustering is that the
N time series in the panel arise from H hidden classes; see Frühwirth-Schnatter
(2011) for a review. Within each class, say h, all time series can be characterized by
the same data generating mechanism, called a clustering kernel, which is defined
in terms of a probability distribution for the time series yi = {yi1, . . . , yi,Ti

}, de-
pending on an unknown class-specific parameter ϑh. A latent cluster indicator Si

taking a value in the set {1, . . . ,H } is introduced for each time series yi to indicate
which class the individual i belongs to, that is, p(yi |Si,ϑ1, . . . ,ϑH) = p(yi |ϑSi

).
Note that we cluster the entire employment profile jointly; hence Si is constant for
each worker over the entire observation period.

To address serial dependence among the observations for each individual i,
model-based clustering of time series data is typically based on dynamic clus-
tering kernels derived from first order Markov processes, where the clustering
kernel p(yi |ϑh) = ∏Ti

t=1 p(yit |yi,t−1,ϑh) is formulated conditional on the ini-
tial state yi0, which in our application is equal to 1 (employed) for all individu-
als. For discrete-valued time series, persistence is typically captured by assuming
that yi follows a time-homogeneous Markov chain of order one. Applications of
time-homogeneous Markov chain clustering to analyze individual wage careers
in the Austrian labor market include Pamminger and Frühwirth-Schnatter (2010),
Pamminger and Tüchler (2011) and Frühwirth-Schnatter et al. (2012).

However, the assumption that the long-run career paths of workers who expe-
rienced plant closure follow a time-homogeneous Markov chain is not realistic
[see Ichino et al. (2017), Figure 2]. A descriptive investigation of the evolution
of the employment rate over time after plant closure reveals that the employment
rate does not converge to a steady state but rather declines steadily with distance
from plant closure. Homogeneity would imply that all state probabilities, includ-
ing the employment rate, converge to a steady state, both within each cluster as
well as marginalized over all clusters. To obtain a nonstationary pattern, we need
to assume that the transition probabilities between the various states change with
distance from plant closure. Furthermore, it is to be expected that there is a lot of
heterogeneity in this time-varying pattern across workers.

To capture this nonstationary feature of our data, we apply Markov chain clus-
tering based on a time-inhomogeneous first order Markov chain model with class-
specific time-varying transition matrices ϑh = (πh, ξh1, . . . , ξh,10) as clustering
kernel. More specifically, we assume that the transition behavior changes with dis-
tance from plant closure. Since the initial state is employment (i.e., yi0 = 1) for all
workers, the first transition is described by the row vector πh = (πh,1, . . . , πh,4)

containing the cluster-specific probability distribution of yi1, the state at the end
of the first quarter after plant closure. The transition matrix ξh1 describes the
transition behavior between the various states in quarter two to four after plant
closure, while the remaining transition matrices ξhy , y = 2, . . . ,10, describe
the transition behavior for all four quarters in year y after plant closure. Since
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the fourth state, namely retirement, is an absorbing state, each of these time-
varying transition matrices ξhy consists of three rows ξhy,j · = (ξhy,j1, . . . , ξhy,j4),
j = 1,2,3, representing a probability distribution over the states {1,2,3,4}, that
is,

∑4
k=1 ξhy,jk = 1. Hence the clustering kernel reads

(1) p(yi |ϑh) = p(yi,−1|yi1, ξh1, . . . , ξh,10)p(yi1|Si = h,πh),

where yi,−1 = {yi2, . . . , yi,Ti
} denotes the truncated time series, excluding state

yi1. The distribution of yi,−1 is given by a sequence of time-varying transition
matrices changing every year,

(2) p(yi,−1|yi1, ξh1, . . . , ξh,10) =
10∏

y=1

3∏
j=1

4∏
k=1

ξ
Niy,jk

hy,jk ,

with transition probabilities ξh1,jk = Pr(yit = k|yi,t−1 = j, Si = h, t ∈ {2,3,4}),
and ξhy,jk = Pr(yit = k|yi,t−1 = j, Si = h, t ∈ {4(y − 1) + 1, . . . ,4y}) for y =
2, . . . ,10. For each time series yi,−1, the cluster-specific sampling distribution (2)
depends on the number of transitions from state j to state k observed in each
year, that is, Ni1,jk = #{yi,t−1 = j, yit = k|t ∈ {2,3,4}} and Niy,jk = #{yi,t−1 =
j, yit = k|t ∈ {4(y − 1) + 1, . . . ,4y}} for y = 2, . . . ,10. If Ti < 40, then all transi-
tion counts are zero for all unobserved quarters.

The choice of the distribution for the state yi1 at the end of the first quarter
in (1) has to address the problem with initial conditions in nonlinear dynamic
models with unobserved heterogeneity; see, for example, Heckman (1981) and
Wooldridge (2005). Skrondal and Rabe-Hesketh (2014) provides an excellent re-
view of different approaches in the context of dynamic/transition models for bi-
nary data with unobserved heterogeneity where this problem was first discussed
by Aitkin and Alfó (1998). This strand of literature focuses on the case where
unobserved heterogeneity is captured through an individual random effect fol-
lowing a continuous distribution. However, as discussed in Frühwirth-Schnatter
et al. (2012), this problem is also relevant for dynamic models where Si follows
a discrete distribution—hence in particular for model-based clustering based on
transition models. As for the continuous case, the key issue is to allow for depen-
dence between the initial state yi1 and the discrete-valued latent variable Si . In
Frühwirth-Schnatter et al. (2012), this dependence has been achieved by allow-
ing the prior distribution of Si to depend on yi1. In the present paper, we suggest
an alternative approach based on factorizing the joint distribution of yi1 and Si

as p(yi1, Si |·) = p(yi1|Si, ·)p(Si |·), where the state distribution p(yi1|Si, ·) in the
first quarter after plant closure is allowed to be different across the clusters

(3) p(yi1|Si = h,πh) =
4∏

k=1

π
Ii,k

h,k ,

where πh,k = Pr(yi1 = k|Si = h), πh = (πh,1, . . . , πh,4) and Ii,k = I {yi1 = k} is
an indicator for a worker’s state at the end of the first quarter after plant closure.
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Following the mixture-of-experts approach introduced for Markov chain clus-
tering methods by Frühwirth-Schnatter et al. (2012), the distribution p(Si |·) is in-
fluenced by exogenous covariates X = (X1, . . . ,Xr). For each individual i, exoge-
nous covariates (xi1, . . . , xir ) observed for X influence the probability to belong to
a certain cluster through a multinomial logit (MNL) model

(4) Pr(Si = h|β2, . . . ,βH ,X = xi ) = exp (xiβh)

1 + ∑H
l=2 exp (xiβ l)

, h = 1, . . . ,H,

where the row vector xi = (1, xi1, . . . , xir ) includes a constant intercept in addition
to the exogenous covariates. For identifiability reasons β1 = 0, which means that
h = 1 is the baseline class and βh is the effect on the log-odds ratio relative to the
baseline.

For estimation we pursue a Bayesian approach. For a fixed number H of clus-
ters, Markov chain Monte Carlo (MCMC) methods are used to estimate the latent
cluster indicators S = (S1, . . . , SN) along with the unknown cluster-specific pa-
rameters θH = (ϑ1, . . . ,ϑH ,β2, . . . ,βH) from the data y = (y1, . . . ,yN). To sam-
ple from the posterior distribution p(θH ,S|y), we extend the sampler introduced
in Frühwirth-Schnatter et al. (2012) to time-inhomogeneous mixture-of-experts
Markov chain clustering; see the Appendix for computational details.

4. Analysing plant closure effects. To identify clusters of individuals with
similar career patterns after plant closure, we apply Markov chain clustering for
two up to six clusters. All computations are based on the prior distributions intro-
duced in the Appendix. For each number H of clusters we simulate 15,000 MCMC
draws after a burn-in of 10,000 draws and use them for all posterior inference re-
ported below.3

In the following, we start with a description of model selection and posterior
classification. Second, we discuss the cluster-specific postdisplacement career pat-
terns that are implied by the estimated transition processes. Third, we describe
the correlation between cluster membership and workers’ characteristics. Finally,
we compare the career paths of the displaced workers with workers in the control
group who did not experience a job loss.

4.1. Model selection. Statistical model selection criteria such as AIC, BIC and
the AWE criterion as discussed, for example, in Frühwirth-Schnatter (2011), are
applied to select the number H of clusters; see Table 2. As in previous studies [e.g.,
Frühwirth-Schnatter et al. (2012), Pamminger and Frühwirth-Schnatter (2010)],
these statistical criteria are ambiguous and do not give a clear answer, with AIC

3The computing time for all 25,000 draws is approx. 15 minutes for H = 2, 1 hour and 2 minutes
for H = 3, 1 hour and 33 minutes for H = 4, 2 hours and 21 minutes for H = 5 and 4 hours and 45
minutes for H = 6 on a Lenovo Thinkpad T410s laptop equipped with 4 GB RAM and an Intel Core
i5 processor with 2.67 GHz.
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TABLE 2
Various statistical criteria to select the number H of clusters

H 2 3 4 5 6

AIC 112,160.9 110,381.0 109,113.4 107,567.6 108,057.0
BIC 113,575.5 112,549.6 112,036.0 111,244.2 112,487.7
AWE 114,402.1 114,188.3 114,159.6 114,539.8 116,356.4

and BIC supporting a five cluster solution, while AWE selects a model with four
clusters. In addition, following another related study [Frühwirth-Schnatter et al.
(2016)], we found it useful to select H such that the resulting clusters are suffi-
ciently distinct, both in statistical terms as well as in terms of allowing a meaning-
ful economic interpretation.

As explained in detail in Section 4.4, we can conveniently interpret five dis-
tinct clusters of career patterns, which are characterized by a combination of mo-
bility/persistence and attachment to the labor force—that is, employment levels:
cluster LOW-ATTACHED and cluster HIGHLY ATTACHED are characterized by low
and high levels of attachment to the labor market, respectively, with high persis-
tence in the corresponding states; cluster MOBILE + LOW-ATTACHED and clus-
ter MOBILE + HIGHLY ATTACHED are characterized by a much higher level of
mobility together with low and high levels of attachment to the labor market, re-
spectively; and, finally, in cluster RETIRING retirement is the predominant state.
In a six-cluster model, the distinction between the different clusters is less clear.
On the other hand, cluster solutions with less than five clusters lead to clusters that
were still rather inhomogeneous in terms of the career patterns allocated to these
clusters. Therefore, we concentrate in the following on the five cluster solution
chosen by AIC and BIC, because this solution also leads to meaningful interpreta-
tions from an economic point of view.

4.2. Posterior classification. As mentioned at the end of Section 3, we es-
timate the latent cluster indicators S = (S1, . . . , SN) jointly with the unknown
cluster-specific parameters θH = (ϑ1, . . . ,ϑH ,β2, . . . ,βH ) by sampling from
the posterior distribution p(θH ,S|y). Parameter estimation is then based on the
marginal posterior distribution p(θH |y) which is integrated over the unknown la-
tent cluster indicators S. Within full conditional Gibbs sampling, soft clustering is
performed implicitly [see classification rule (8) in the Appendix], and each worker
impacts the estimates of all cluster-specific transition matrices weighted according
to his probability to belong to a certain cluster.

To obtain a first understanding of the transition patterns in the various clusters,
the posterior draws are post-processed and hard clustering is performed for all in-
dividuals. Individuals are assigned to the five clusters of career patterns using the
posterior classification probabilities tih(θ5) = Pr(Si = h|yi ,X = xi , θ5) given by
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FIG. 1. Employment profiles of typical cluster members within each cluster showing the 10th, 25th,
50th, 70th, 100th, 200th and 350th highest classification probabilities.

equation (8) in the Appendix. The posterior expectation t̂ih = E(tih(θ5)|y) of these
probabilities is estimated by evaluating and averaging tih(θ5) over all MCMC
draws of θ5. Each worker is then allocated to that cluster Ŝi , which exhibits the
maximum posterior probability, that is, Ŝi is defined such that t̂

i,Ŝi
= maxh t̂ih. This

decision rules minimizes the misclassification risk for each worker; see, for exam-
ple, Frühwirth-Schnatter (2006), Section 7.1. The closer t̂

i,Ŝi
is to 1, the higher is

the segmentation power for individual i.
Typical group members are visualized in Figure 1 for each cluster through their

individual time series. The career patterns in Figure 1 are fairly similar within each
cluster but very different across clusters.

Based on the posterior classification probabilities of cluster membership for
each of the N workers, we compute the average size of each cluster. The corre-
sponding shares of individuals in each cluster are shown in the left-hand graph of
Figure 2. The displaced workers in our sample are relatively unevenly distributed
across the five clusters: 21% of the persons belong to cluster LOW-ATTACHED,
44% to cluster HIGHLY ATTACHED, 8% to cluster MOBILE + LOW-ATTACHED,
7% to cluster MOBILE + HIGHLY ATTACHED, and 20% to cluster RETIRING.

4.3. Analyzing career mobility. To analyze career mobility patterns in the five
different clusters we investigate for each cluster the posterior distribution of the
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FIG. 2. Group sizes for the five cluster solution. The cluster sizes are calculated based on the pos-
terior classification probabilities. Left-hand side—workers experiencing plant closure (displaced);
right-hand side—workers from the control group not experiencing plant closure.

time-varying cluster-specific transition matrices ϑh = (πh, ξh1, . . . , ξh,10) for h =
1, . . . ,5. For all workers in our sample, the transition process starts with the shock
of job displacement due to plant closure. Thus the vector πh defines, for each
cluster, the worker’s state distribution πh,1 = πh at the end of the first quarter
after plant closure. The corresponding posterior expectation E(πh,1|y) is shown
for each cluster in Figure 3 at t = 1.

The time-varying cluster-specific transition matrices are visualized in Figure 4
with each of the five rows corresponding to a specific cluster. The four columns of
Figure 4 correspond to transition probabilities of particular interest, namely persis-
tence in the employment state (i.e., j = 1 → k = 1), transition from employment
to out of labor force (i.e., j = 1 → k = 3), transition from out of labor force back
to employment (i.e., j = 3 → k = 1) and transition from employment to retire-
ment (i.e., j = 1 → k = 4). Each single plot in Figure 4 shows how the posterior
distribution of the transition probability ξhy,jk from j → k changes in cluster h

over time as the yearly distance from plant closure y = 1, . . . ,10 increases. Note
that each posterior distribution p(ξhy,jk|y) is represented by box plots of the cor-
responding MCMC draws. Furthermore, numerical estimates and standard devia-
tions for the initial distribution πh as well as the above selected transition proba-
bilities ξhy,jk are reported in Table 3.

To evaluate the long-term effect of the job loss experienced by all workers, the
state distribution πh,t was computed also for all subsequent quarters t = 2, . . . ,40,
individually for each cluster. Given the distribution of states at the end of the
first quarter, described by πh, each state distribution πh,t is computed by taking
into account that the transition process evolves according to a time-inhomogenous
Markov process:

(5) πh,t = πhξh,1→t , h = 1, . . . ,H.

Starting from ξh,1→2 := ξh1, the transition matrix ξh,1→t from the first to the qth
quarter in year y, that is, t = 4(y−1)+q , can be computed for t = 3, . . . ,40 recur-
sively from the sequence of cluster-specific time-inhomogenous transition matri-
ces through ξh,1→t = ξh,1→(t−1)ξhy . Figure 3 shows the evolution of the posterior
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FIG. 3. Posterior expectation of the distribution πh,t over the 4 states (1 = employed, 2 = sick
leave, 3 = out of labor force, 4 = retired) after a period of t quarters in the various clusters (workers
experiencing plant closure).
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TABLE 3
Posterior expectations E(πh,k |y) and, in parenthesis, posterior standard deviations SD(πh,k |y) of

the state probability πh,k at the end of the first quarter after plant closure for all states k = 1, . . . ,4
as well as posterior expectations E(ξhy,jk |y) and, in parenthesis, posterior standard deviations

SD(ξhy,jk |y) of selected transition probabilities ξhy,jk for selected years y in the various clusters.
1 = employed, 2 = sick leave, 3 = out of labor force, 4 = retired

h πh,1 πh,2 πh,3 πh,4

LOW-ATTACHED 0.292 (0.021) 0.021 (0.005) 0.684 (0.022) 0.002 (0.002)
HIGHLY ATTACHED 0.630 (0.011) 0.010 (0.002) 0.359 (0.011) 0.001 (0.001)
MOBILE + LOW-ATTACHED 0.294 (0.026) 0.030 (0.010) 0.672 (0.028) 0.003 (0.004)
MOBILE + HIGHLY ATTACHED 0.330 (0.026) 0.038 (0.012) 0.627 (0.027) 0.005 (0.006)
RETIRING 0.422 (0.016) 0.101 (0.009) 0.449 (0.016) 0.027 (0.005)

year y j = 1 → k = 1 j = 1 → k = 3 j = 3 → k = 1 j = 1 → k = 4

LOW-ATTACHED

y = 1 0.918 (0.009) 0.077 (0.009) 0.062 (0.005) 0.001 (0.001)
y = 5 0.956 (0.006) 0.037 (0.005) 0.013 (0.002) 0.005 (0.001)
y = 10 0.974 (0.006) 0.024 (0.005) 0.010 (0.002) 0.000 (0.000)

HIGHLY ATTACHED

y = 1 0.978 (0.002) 0.019 (0.001) 0.545 (0.022) 0.000 (0.000)
y = 5 0.989 (0.001) 0.007 (0.001) 0.416 (0.022) 0.000 (0.000)
y = 10 0.978 (0.001) 0.015 (0.001) 0.071 (0.019) 0.000 (0.000)

MOBILE + LOW-ATTACHED

y = 1 0.860 (0.014) 0.130 (0.013) 0.232 (0.020) 0.001 (0.001)
y = 5 0.817 (0.012) 0.158 (0.010) 0.154 (0.013) 0.001 (0.001)
y = 10 0.856 (0.018) 0.117 (0.016) 0.078 (0.009) 0.001 (0.001)

MOBILE + HIGHLY ATTACHED

y = 1 0.841 (0.012) 0.146 (0.012) 0.506 (0.024) 0.003 (0.001)
y = 5 0.821 (0.008) 0.158 (0.007) 0.740 (0.019) 0.003 (0.001)
y = 10 0.822 (0.013) 0.146 (0.011) 0.540 (0.037) 0.005 (0.002)

RETIRING

y = 1 0.938 (0.007) 0.021 (0.004) 0.221 (0.012) 0.021 (0.005)
y = 5 0.955 (0.004) 0.024 (0.003) 0.011 (0.003) 0.000 (0.000)
y = 10 0.722 (0.031) 0.052 (0.012) 0.040 (0.009) 0.187 (0.027)
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FIG. 4. Visualization of the posterior distribution of four selected time-varying transition probabil-
ities from state j to state k in the various clusters, with each row corresponding to a specific cluster.
The first box plot in columns 1, 2 and 4 displays the posterior distribution of the state probability
πh,k at the end of the first quarter after plant closure for each cluster h. The remaining ten box plots
display the posterior distribution of the transition probabilities ξhy,jk over the years y = 1,2, . . . ,10
for each cluster h. 1 = employed, 2 = sick leave, 3 = out of labor force, 4 = retired.

expectations E(πh,t |y) of the cluster-specific state distribution over distance t from
plant closure.4

4.4. Understanding the clusters. In this subsection we present a synthesis of
posterior inference in Figure 1 to Figure 4 and Table 3 and interpret the estimated
transition processes after job displacement for the different clusters. The figures
highlight remarkable differences across clusters in the state distribution at the end
of the first quarter as well as in the subsequent transition patterns. We will now
discuss these career patterns cluster by cluster.

Cluster HIGHLY ATTACHED is the largest one with about 44% of the observa-
tions. Workers in this cluster have a relatively high probability to be employed

4The posterior expectation is estimated by computing πh,t for t = 1, . . . ,40 for all 15,000 MCMC
draws and averaging the resulting draws of πh,t for each quarter t and each cluster h.
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again within one quarter after plant closure (63%), whereas this probability is con-
siderably smaller for all other clusters. Only 35.9% of the cluster members are
still out of labor force one quarter after plant closure. For workers in this cluster,
the probability to remain employed is close to 1 over the whole 10 years (98.9%
five and 97.8% 10 years after plant closure). As a consequence, for workers in this
cluster the risk of another job loss is very small (0.7% five and 1.5% 10 years after
plant closure). In the unlikely event that these workers lose their job, they have
quite a good chance to move back into employment within one quarter, however,
with increasing distance from plant closure, this chance declines and is as small as
7.1% after 10 years.

Workers in cluster LOW-ATTACHED, the second largest one containing about
21% of the sample, are less successful than workers in cluster HIGHLY ATTACHED

in finding a new job in the first quarter after plant closure (only about 30%) and
the majority (68.4%) are still out of labor force. Similar numbers can be observed
for workers in cluster MOBILE + LOW-ATTACHED and cluster MOBILE + HIGHLY

ATTACHED. Overall, workers in these three clusters suffer from the plant closure
at least in the short run. However, what distinguishes workers in cluster LOW-
ATTACHED from workers in the other two clusters is the subsequent transition
behavior. Most strikingly, among workers in cluster LOW-ATTACHED the chance
of moving from out of labor force back into employment is extremely low in the
years following plant closure and even decreases, being equal to only 1.3% five
and 1% 10 years after plant closure. Members of this cluster hardly ever move
back into employment after having lost their job due to plant closure and suffer
from plant closure also in the long run.

While the clusters MOBILE + LOW-ATTACHED and MOBILE + HIGHLY AT-
TACHED are similar to cluster LOW-ATTACHED in the short run after plant closure,
they differ from this cluster substantially in their subsequent transition pattern be-
tween out of labor force and employment. Workers in these two clusters recover
more easily from job displacement and have about the same probability of remain-
ing employed, which is nearly constant over time and, on average, equal to 82%.
They have a similar transition pattern from employment back to out of the labor
force, which again is nearly constant over time and is, on average, equal to about
15%. Obviously, members in these two clusters have a good chance to move back
into the labor market after plant closure, but they are at a high risk to lose their job
again. Workers in these two clusters which are characterized by frequent switches
between employment and being out of labor force suffer from an intrinsically high
risk of being out of labor force that appears to be unrelated to plant closure.

The main distinction between cluster MOBILE + HIGHLY ATTACHED and clus-
ter MOBILE + LOW-ATTACHED is the transition pattern from out of labor force
back into employment and how it evolves with distance from plant closure. This
difference leads to career paths that are quite distinctive. For workers in clus-
ter MOBILE + HIGHLY ATTACHED, the chance of moving back into the labor
market is higher than in the other cluster and even increases in the first five years
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after plant closure. The corresponding transition probability is as large as 74%
five years and still equal to 54% 10 years after plant closure. This leads to career
patterns that are characterized by frequent transitions between employment and
out of labor force; see also some typical members of this cluster in Figure 1. For
cluster MOBILE + LOW-ATTACHED, the transition probability from out of labor
force back into employment is much smaller and declines, being only 15% five
years and as small as 7.8% 10 years after plant closure. Workers in both clus-
ters switch between employment and being out of labor force; however, workers
in cluster MOBILE + LOW-ATTACHED have a much higher risk to remain out of
labor force. As a consequence, this leads to much longer spells of being out of
labor force than for workers in cluster MOBILE + HIGHLY ATTACHED, where this
duration is very short; see again Figure 1.

Finally, workers in cluster RETIRING are less successful than workers in clus-
ter HIGHLY ATTACHED to find a job in the first quarter after plant closure (42.2%)
but more successful than workers in the other clusters. In cluster RETIRING imme-
diate transition into retirement after plant closure happens with positive probability
(2.7%), whereas this probability is practically zero for all other clusters. Workers
in this cluster also have a much higher risk (10.1%) to be on sick leave immedi-
ately after plant closure. In addition, we find an increasing transition probability
from employment into retirement which is as large as 18.7% 10 years after plant
closure, whereas this probability practically remains zero for all other clusters. As
a consequence, the probability to remain employed, which is relatively high in the
first years after plant closure, declines in later years and is the smallest among all
clusters (72.2%) after 10 years.

The importance of using a time-inhomogeneous rather than a time-homoge-
neous Markov chain clustering method for our application can be best seen in Fig-
ure 3, which shows for each cluster how the state distribution evolves over time.
The largest changes can be seen in the clusters RETIRING and MOBILE + LOW-
ATTACHED, which is due to the varying importance of the states employment and
retirement. The inhomogeneous modeling approach deals with such nonlinear pat-
terns in a very flexible way. Our time series data, where a stable equilibrium pro-
cess is shocked by a plant closure, require flexibility in particular at the beginning.
The importance of allowing for a separate transition process in the first quarter can
clearly be seen in the large turbulence in the first year in Figure 3.

4.5. The impact of observables on group membership. After having estab-
lished differences in labor market careers following plant closure across five differ-
ent clusters of workers, we now investigate how individual characteristics relate to
cluster membership. From a social policy point of view, it is interesting to under-
stand if the characteristics of a particular worker make him more prone to belong
to a specific cluster. In particular, we would like to answer questions such as: Is
the career adjustment after plant closure easier for younger workers than for older
workers? Who might be forced into early retirement? Do blue-collar workers have
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a higher risk to belong to the most disadvantaged cluster, LOW-ATTACHED than
white-collar workers?

The mixture-of-experts approach allows to answer these and similar questions,
since we specify the probability of an individual to belong to a certain cluster by
the multinomial logit (MNL) model given in equation (4). The regression frame-
work flexibly controls for the impact of six covariates in the MNL model, namely
age at the time of plant closure, experience, broad occupational status (i.e., blue
versus white collar), income, firm size and the economic sector, each with dummy
coding. More specifically, we introduce five age groups (35–39, 40–44, 45–49,
50–55), three levels of experience (low, medium, high), a dummy for white-collar
workers, three levels of income before plant closure (low, medium, high) based
on the tertiles of the general income distribution at time of plant closure, three
categories of firm size (1–10, 11–100, and more than 100 employees) and four
broad economic sectors [service, industry, remaining seasonal business (outside
of hotel and construction), unknown]; see also Table 1. Alternatively, it would be
possible to include all continuous covariates in the mixture-of-experts approach
without discretization, as exemplified by a related paper on mothers’ long-run
career patterns after first birth [Frühwirth-Schnatter et al. (2016)], which uses a
time-homogeneous mixture-of-experts Markov chain clustering approach.

Bayesian inference for the regression parameters βh in the MNL model (4) is
summarized in Table 4, which reports the posterior expectation and the posterior
standard deviation of all regression parameters relative to the baseline, which is
equal to cluster LOW-ATTACHED.

To visualize the main results, Figure 5 shows to which extent the probability of
belonging to each of the five clusters is related to each individual covariate Xj ; see
also Table 5. For this evaluation, all covariates in X apart from Xj are set to their
mean values observed in the sample. The probability Pr(Si = h|β2, . . . ,βH ,X)

that a worker with certain predetermined characteristics X belongs to cluster h

is computed for all MCMC draws, and the reported values are averages over all
MCMC draws. Since the probabilities Pr(Si = h|β2, . . . ,βH ,X) act as a “prior”
probabilities in the Bayes’ classification rule (8), as outlined in the Appendix, the
various diagrams in Figure 5 can be interpreted as providing the prior probability
that a worker belongs to any of the five clusters based solely on characteristics X
known before plant closure.

A worker’s broad occupational status is highly related to cluster membership;
see Figure 5, panel (a), as well as Table 5. Most strikingly, blue-collar workers
have about half the risk of white-collar workers (18% versus 41%) to belong to
cluster LOW-ATTACHED which suffers most from plant closure. This is a specific
feature of plant closure events; see also Schwerdt et al. (2010). Not surprisingly,
white-collar workers have a small prior probability to belong to cluster MOBILE +
HIGHLY ATTACHED (4%).

With respect to age at the time of plant closure, we see in Figure 5, panel (b), as
well as in Table 5, that workers younger than 45 years have similar probabilities
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TABLE 4
Multinomial logit model to explain cluster membership in a particular cluster (baseline: LOW-ATTACHED); the numbers are the posterior expectation

and, in parenthesis, the posterior standard deviation of the various regression coefficients

HIGHLY ATTACHED MOBILE MOBILE RETIRING

+ LOW-ATTACHED + HIGHLY ATTACHED

Intercept −1.522 (0.177) −0.762 (0.249) −3.002 (0.261) −4.114 (0.294)

Age 35–39 (basis)
Age 40–44 0.220 (0.106) 0.334 (0.163) 0.201 (0.175) 0.307 (0.323)

Age 45–49 0.061 (0.118) 0.160 (0.186) 0.001 (0.196) 2.398 (0.246)

Age 50–55 −2.740 (0.388) −0.988 (0.436) 0.725 (0.236) 4.410 (0.249)

Experience ≤ 1,675 days (basis)
Experience from 1,676 to 3,938 days 0.404 (0.107) −0.687 (0.163) −0.318 (0.164) −0.010 (0.172)

Experience ≥ 3,939 days 0.687 (0.108) −0.891 (0.190) −0.490 (0.176) 0.272 (0.163)

Blue collar 1.045 (0.111) 0.665 (0.183) 2.020 (0.179) 1.212 (0.166)

Income in lowest tertile (basis)
Income in middle tertile 1.235 (0.156) −0.134 (0.197) 0.469 (0.191) 0.274 (0.202)

Income in highest tertile 1.146 (0.153) −0.352 (0.186) −0.334 (0.213) 0.022 (0.201)

Firm size ≤ 10 (basis)
Firm size from 11 to 100 0.701 (0.100) 0.163 (0.159) 0.578 (0.155) 0.787 (0.157)

Firm size > 100 0.617 (0.142) −0.761 (0.286) −0.002 (0.233) 0.941 (0.190)

Economic sector: service (basis)
Economic sector: industry 0.368 (0.114) 0.314 (0.173) 0.785 (0.193) 0.253 (0.173)

Economic sector: seasonal −0.224 (0.318) −0.065 (0.490) 0.588 (0.534) 0.282 (0.465)

Economic sector: unknown 0.188 (0.103) −0.110 (0.164) 1.017 (0.179) 0.542 (0.165)
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TABLE 5
Displaced workers: cluster membership probabilities for a single covariate. All other covariates are set to their mean values observed in the sample

LOW-ATTACHED HIGHLY ATTACHED Mobile LA Mobile HA RETIRING

White collar 0.408 0.382 0.082 0.044 0.085
Blue collar 0.181 0.478 0.071 0.145 0.125

Age 35–39 0.248 0.609 0.072 0.052 0.018
Age 40–44 0.207 0.634 0.084 0.053 0.021
Age 45–49 0.201 0.526 0.069 0.043 0.160
Age 50–55 0.131 0.022 0.015 0.057 0.775

Experience ≤ 1,675 days 0.318 0.325 0.146 0.109 0.102
Experience from 1,676 to 3,938 days 0.301 0.459 0.070 0.075 0.096
Experience ≥ 3,939 days 0.260 0.526 0.049 0.055 0.109

Income in lowest tertile 0.405 0.218 0.138 0.109 0.130
Income in middle tertile 0.251 0.461 0.075 0.107 0.105
Income in highest tertile 0.291 0.489 0.070 0.056 0.095

Firm size ≤ 10 0.368 0.370 0.106 0.076 0.081
Firm size from 11 to 100 0.238 0.480 0.080 0.087 0.114
Firm size > 100 0.266 0.493 0.036 0.055 0.149

Economic sector: service 0.345 0.426 0.088 0.049 0.093
Economic sector: industry 0.264 0.471 0.092 0.081 0.091
Economic sector: seasonal 0.280 0.418 0.064 0.109 0.129
Economic sector: unknown 0.297 0.440 0.080 0.077 0.105
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FIG. 5. Impact of each covariate on the probability of a worker to belong to a certain cluster:
(a) occupational state, (b) age, (c) experience, (d) income at time of plant closure, (e) firm size, (f)
firm’s economic sector (for each single covariate, all other covariates are set to their mean values
observed in the sample). For each covariate, the probabilities of belonging to, respectively, clus-
ter LOW-ATTACHED, HIGHLY ATTACHED, MOBILE + LOW-ATTACHED, MOBILE + HIGHLY AT-
TACHED and RETIRING are stacked from bottom to the top.

to belong to the various clusters. In particular, their probability to belong to clus-
ter RETIRING is low, but this probability strongly increases with age. Individuals
with higher age more often belong to cluster RETIRING, and this probability is
particularly high (77%) for the oldest group, aged 50–55. At the same time, the
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probability of being in cluster HIGHLY ATTACHED reduces with age and is neg-
ligible for the oldest age group. The probability to belong to cluster MOBILE +
HIGHLY ATTACHED is practically independent of age, and the probability of be-
longing to cluster LOW-ATTACHED is slightly decreasing with age.

Work experience is less strongly related to cluster membership than age; see
Figure 5, panel (c), and Table 5. We see that the five clusters are quite evenly
distributed among individuals with low level of work experience. On the other
hand, higher experience levels are correlated with a higher probability to belong to
cluster HIGHLY ATTACHED and a lower probability to belong to cluster MOBILE +
LOW-ATTACHED. Interestingly, the probability of belonging to cluster RETIRING

is practically independent of the amount of work experience.
The influence of predisplacement income, measured in tertiles of the income

distribution, can be studied in Figure 5, panel (d); see also Table 5. Low-income
workers have a particularly high probability to belong to cluster LOW-ATTACHED

and, at the same time, a comparably low probability to belong to cluster HIGHLY

ATTACHED. For the other income groups, cluster membership resembles that of
medium and high experience.

Figure 5, panels (e) and (f), as well as Table 5 show that cluster membership
also varies with the size and industry affiliation of the firms from which workers
are displaced. The groups with the largest portion in cluster LOW-ATTACHED are
workers from small firms and from the service sector. The largest portion in clus-
ter MOBILE + HIGHLY ATTACHED is exhibited by the workers of medium size
firms and workers from seasonal business outside of hotel and construction.

4.6. Comparison to the control group. After analyzing the career paths of dis-
placed workers in the five different clusters, we now turn to a comparison of the
careers of displaced workers with the control group of workers not affected by
a plant closure. This gives us some insights in the counterfactual situation that
would have arisen if the plant closure had not taken place. The literature on job
displacements typically compares mean postdisplacement outcomes among dis-
placed workers with those in a control group of nondisplaced worker [Jacobson,
LaLonde and Sullivan (2005)]. Our objective is more complex. We want to create
a separate counterfactual scenario for each cluster group and compare the mean
outcome in each group with the counterfactual. To achieve this goal, we propose a
novel method that relies on posterior classification of control individuals based on
the clustering model that we estimated for the displaced workers. In the following
we describe the corresponding classification of the controls and the simulation of
the counterfactual career patterns in each cluster.

In Section 2, we applied a weighted sampling procedure to construct a control
group of nondisplaced workers ensuring that displaced and control individuals are
similar with respect to the set of individual characteristics which determine clus-
ter membership in the mixture-of-experts model specified in equation (4). Under
the assumption that job displacement due to plant closure is random given these
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covariates, the only feature that distinguishes the labor market careers of the two
groups is the experience of a plant closure. It is evident from Figure 3 that this
shock has a dramatic effect on the state distribution πh = πh,1 of displaced work-
ers in the first quarter after displacement with a very high rate of being out of
labor force in all cluster groups. We thus have to take this event into account when
constructing counterfactual career trajectories based on the control group.

The classification of control observations into cluster groups relies on the fol-
lowing thought experiment. What would have happened to the transition patterns
in each cluster of displaced workers if we eliminated the displacement shock in the
initial quarter? To implement this thought experiment, we assume that the state dis-
tribution πh in the first quarter after job displacement incorporates the full extent
of the displacement shock, and that the subsequent transition patterns are indepen-
dent from the experience of job displacement. In other words, we assume that the
postdisplacement behaviour from the second quarter onward is determined by the
person’s state in the first quarter after (potential) job displacement, the sequence of
cluster-specific time-inhomogenous transition matrices ξh = (ξh1, . . . , ξh,10) esti-
mated in Section 4.3 and the vector of individual characteristics X via the param-
eters β2, . . . ,βH of the MNL model estimated in Section 4.5.

While the typical career transitions are assumed to be the same for all persons
within each cluster, regardless of whether the person experienced plant closure or
not, it is to be expected that the state distribution at the end of the first quarter after
(potential) plant closure is different for the displaced and the controls. Since the
initial state in the quarter before displacement is employment also in the control
group, that is, yc

i0 = 1, their first transition is described by a row vector π c
h =

(πc
h,1, . . . , π

c
h,4). πc

h contains the probability distribution over all states in the first
quarter for the controls and is assumed to be different from the state distribution πh

of displaced workers due to the absence of the displacement shock. Our assumption
implies that beyond the first quarter, the transition matrices ξh1, . . . , ξh,10, which
were estimated in the displaced sample, can be used to classify the controls into
the five clusters.

Based on this cluster model, the cluster assignment of control person i with
the observed individual time series denoted by yc

i and individual characteristics xc
i

is performed by computing the posterior distribution tcih(θ5) = Pr(Sc
i = h|yc

i ,X =
xc
i , θ5) of the class indicator Sc

i over the five clusters for h = 1, . . . ,5 by means of
Bayes’ rule,

tcih(θ5) ∝ p
(
yc
i,−1|yc

i1, ξh

)
p

(
yc
i1|Sc

i = h,πc
h

)
× Pr(Sc

i = h|β2, . . . ,βH ,X = xc
i ).

(6)

In (6), p(yc
i,−1|yc

i1, ξh) is the clustering kernel based on a time-inhomogeneous
first-order Markov chain as introduced in (2), whereas the cluster-specific state
distribution π c

h = (πc
h,1, . . . , π

c
h,4) for the control group in the first quarter after
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(potential) plant closure defines

p
(
yc
i1|Sc

i = h,πc
h

) =
4∏

k=1

(
πc

h,k

)Ci,k ,

with πc
h,k = Pr(yc

i1 = k|Sc
i = h) and Ci,k = I {yc

i1 = k} being an indicator for a
nondisplaced worker’s state in the first quarter. Pr(Sc

i = h|β2, . . . ,βH ,X = xc
i )

is the cluster membership distribution introduced in (4), which is based on the
individual characteristics xc

i of the control person under consideration.
Rather than estimating (ξ1, . . . , ξ5,β2, . . . ,β5) again for the control group,

we use the MCMC draws obtained for the displaced persons to assign the indi-
viduals from the control group to the five clusters of career patterns during an
MCMC-type algorithm. Only the cluster-specific state distributions in the first
quarter are estimated by sampling πc

h for each cluster from a Dirichlet distribu-
tion, πc

h|Sc,y ∼ D(g0,1 +Ch
1 , . . . , g0,4 +Ch

4 ), where Ch
k = ∑

i:Si=h Ci,k is the total
number of control group workers in cluster h being in state k in the first quarter,
SC = (SC

1 , . . . , SC
N), and πc

h ∼D(g0,1, . . . , g0,4) follows a Dirichlet prior with hy-
perparameters analogous to those in the Appendix.

We assign individuals in the control group using the posterior expectation t̂ cih =
E(tcih(θ5)|yc

i ). t̂ cih is estimated by evaluating and averaging tcih(θ5) as given by (6)
using the 15,000 MCMC draws of (ξ1, . . . , ξ5,β2, . . . ,β5) obtained for the group
of displaced workers and 15,000 MCMC draws of π c

h obtained for the group of
controls as described above. Each worker from the control group is then allocated
to that cluster Ŝc

i which exhibits the maximum posterior probability, that is, Ŝc
i is

defined in such a way that t̂ c
i,Ŝc

i

= maxh t̂cih.

Based on the posterior classification Ŝc
i of all controls, we compute the size of

each cluster for the controls. The distribution of individuals in the control group
across clusters is shown in Figure 2 and compared to displaced workers. This com-
parison shows that in absence of the plant closure event the cluster HIGHLY AT-
TACHED would be considerably larger. The size of cluster RETIRING does not
differ much when comparing displaced and control persons, whereas the three re-
maining clusters are significantly smaller in the absence of a plant closure.

Figure 6 shows the evolution of the posterior expectations E(πc
h,t |y) of the

cluster-specific state distribution πc
h,t = πc

hξh,1→t over distance t from plant clo-
sure for the control group, where the transition matrix ξh,1→t has been defined
in (5). Turning to the impact of job displacement from plant closure on career
trajectories in the different clusters, the left-hand side of Figure 7 shows the pos-
terior distribution of the difference Pr(yit = 1|Si = h) − Pr(yc

it = 1|Sc
i = h) =

πh,1,t − πc
h,1,t for the employment states between displaced and control individ-

uals over distance t from plant closure. Career paths of displaced individuals are
characterized by significantly lower employment rates in the initial periods af-
ter plant closure throughout all clusters, but eventually employment rates of both
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groups converge to each other. The speed of convergence varies by cluster with the
fastest convergence rate occurring in clusters HIGHLY ATTACHED and MOBILE

+ HIGHLY ATTACHED and the lowest convergence rate occurring in cluster LOW-
ATTACHED.

Another way to interpret career trajectories in the displaced and counterfactual
cases is a direct comparison of Figure 3 and Figure 6, which show the posterior
expectation of πh,k,t = Pr(yit = k|Si = h) and πc

h,k,t = Pr(yc
it = k|Sc

i = h) for all
labor market states k = 1, . . . ,4 by cluster. During the first eight to 12 quarters
counterfactual trajectories in all clusters are dominated by the employment state.
At larger distances from the job displacement shock, profiles of displaced and
control individuals become very similar, as is also evident from the right-hand side
of Figure 7.

5. Concluding remarks. In this paper, we have analysed labor market data
from Austria on discrete labor market transitions after a plant closure, where we
follow workers over 10 years. Economists have shown that the loss of a job due
to a plant closure can have major disruptive effects on future careers of workers
[Jacobson, LaLonde and Sullivan (1993), Fallick (1996) or Ichino et al. (2017)].
They studied only plant closure effects for average persons, whereas our analysis
applies elaborated statistical techniques such as model-based clustering using fi-
nite mixtures of time-inhomogeneous Markov chain models to explicitly address
unobserved heterogeneity in reaction to losing a job due to an exogenous event
such as a plant closure.

Modelling workers’ transition patterns in such a setting, however, has to address
several issues:

(i) transition patterns immediately after the job loss are very specific, and
(ii) moreover, as workers age transitions into sick leave and retirement spells

become more prevalent.

Such (predictable) changes of transition patterns over the life cycle cannot be
handled, if time-invariant transition matrices in each cluster are assumed as in
Pamminger and Tüchler (2011) or Frühwirth-Schnatter et al. (2012). To address
these issues, we developed and applied a more general method of Markov chain
clustering analysis based on inhomogeneous first-order Markov transition pro-
cesses with time-varying transition matrices. As in previous work, a mixture-of-
experts model is applied that allows cluster membership to depend on a set of
covariates via a multinomial logit model.

Applied to labor market careers after job displacement, the clustering procedure
identifies five distinctive clusters which are characterized by a combination of mo-
bility/persistence and attachment to the labor force. Our analysis allows to distin-
guish between workers who are hardly affected by job displacement and quickly
return to stable employment careers job and others who suffer large losses over
extended periods of time. It turns out that roughly 50% of workers remain “highly
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FIG. 6. Posterior expectation of the distribution πc
h,t over the 4 states (1 = employed, 2 = sick

leave, 3 = out of labor force, 4 = retired) after a period of t quarters in the various clusters (control
group).
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FIG. 7. Analysing the difference πh,k,t − πc
h,k,t in the probability to be in state k (1 = employed,

2 = sick leave, 3 = out of labor force, 4 = retired) between persons experiencing plant closure
[πh,k,t = Pr(yit = k|Si = h)] and controls [πc

h,k,t = Pr(yc
it = k|Sc

i = h)] for the five clusters (ar-
ranged from top to bottom). Left-hand side: posterior distribution of the difference πh,1,t − πc

h,1,t in
the probability to be in state “employed” between persons experiencing plant closure and controls;
right hand side: posterior expectation of the difference πh,k,t − πc

h,k,t , k = 2,3,4, in the probability
to be in one of the remaining states between persons experiencing plant closure and controls.
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attached” to the labor market even after a plant closure, whereas 30% are “low-
attached” (they have difficulties with returning to stable jobs and thus suffer large
employment and earnings losses) and 20% belong to a group which takes early
retirement as an option to exit the labor market.

The empirical findings have important policy implications. In order to imple-
ment efficient policies that provide support to workers hit by an economic down-
turn or a local shock due to the closure of a large plant, it is essential to target
groups who are potentially most adversely affected. Our results provide some guid-
ance with respect to observed characteristics of the least attached groups and the
dynamics of the effects of displacement. This allows not only targeting individuals
by their characteristics but also to identify the relevant timing for interventions.

The model-based clustering approach developed in this paper for the analysis of
the plant closure data might be useful in other areas of applied research whenever
transition processes have to be modelled that are not necessarily stationary over
time. This situation typically occurs when transition processes are analyzed over
the entire life cycle of an entity, and transition rates differ between the beginning
and the end of the life cycle. Other reasons for nonstationarity are shocks to the
stationary transition processes caused by events out of the entities’ control, such as
stock market crashes or natural disasters. In these cases the patterns of transition
during the recovery phase may differ significantly from stationary transitions.

Furthermore, we see several interesting avenues for future statistical research
for these type of models. It is possible to include covariates not only in modelling
the latent group indicator, as we did in the present study, but also in the condi-
tional distribution of the observed outcome, given the group indicator; see, for
example, Frühwirth-Schnatter (2011) for a review. As common for mixtures of
discrete data, another important issue is verifying generic identifiability. Examples
are easily constructed, where generic identifiability fails because discrete-valued
covariates with too little heterogeneity such as, for instance, age groups, appear
both in the mixture-of-experts part and in the group-specific transition model. To
our knowledge, generic identifiability of mixtures of Markov chain models has not
been discussed in full mathematical depth and might be an interesting venue for
future research.

Finally, in the present paper, we were interested in clustering the entire employ-
ment profile of a worker after plant closure. Statistically, this implied to hold the
cluster indicator Si for each worker constant over each time series. Dynamic mix-
ture models where the cluster indicator Si,t changes over time and allows workers
to switch clusters is another interesting line of future research.

APPENDIX: COMPUTATIONAL DETAILS

In this section, we summarize the Bayesian approach toward estimating the un-
known parameters θH = (ϑ1, . . . ,ϑH ,β2, . . . ,βH) and the latent cluster indica-
tors S = (S1, . . . , SN) from categorical panel data y = {y1, . . . ,yN } for a fixed
number H of clusters.
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In a Bayesian framework, estimation of θH is based on the posterior distribution
p(θH |y) of θH given y. Using Bayes’ theorem, the posterior distribution p(θH |y),
given by p(θH |y) ∝ p(y|θH)p(θH ), is derived as the product of the prior distri-
bution p(θH) and the observed-data (mixture) likelihood function p(y|θH) given
by

(7) p(y|θH) =
N∏

i=1

(
H∑

h=1

p(yi |ϑh)Pr(Si = h|β2, . . . ,βH ,X = xi )

)
,

where p(yi |ϑh) is the clustering kernel defined in (1) and Pr(Si = h|β2, . . . ,βH ,

X = xi ) is given by the mixture-of-experts model (4).
Concerning the prior distribution p(θH), we assume prior independence be-

tween the parameters (β2, . . . ,βH) of the mixture-of-experts model and the class-
specific parameters (ϑ1, . . . ,ϑH ) of the clustering kernel. All parameter vectors
βh, h = 2, . . . ,H , are assumed to be independent a priori, each following a stan-
dard normal distribution of dimension r + 1. This means that also the individual
regression coefficients inside a single vector βh = (βh0, . . . , βhr) are independent
a priori, each having a N (0,1) distribution.

The prior distribution for each class-specific time-varying transition matrix ϑh

is composed of priors being conditionally conjugate to the time-varying Markov
chain clustering kernel p(yi |ϑh) defined in (1). This choice implies that each state
distribution πh follows a priori a Dirichlet distribution D(g0,1, . . . , g0,4) with hy-
perparameters g0,1, . . . , g0,4. Furthermore, the three rows ξhy,1·, . . . , ξhy,3· of all
transition matrices ξhy , y = 1, . . . ,10, h = 1, . . . ,H , are independent a priori,
each following a Dirichlet distribution D(e0,yj1, . . . , e0,yj4) with hyperparameters
e0,yj1, . . . , e0,yj4, for j = 1,2,3.

We use empirical transition counts to define weakly informative hyperparame-
ters for these prior distributions. More specifically, we define the 3 × 4 empirical
initial count matrix N0 = (N0

jk), where for each state k = 1, . . . ,4 the element of

the first row is equal to N0
1k := #{yi1 = k for some person i} and equal to 0 in the

second and the third row (i.e., N0
jk = 0 for j = 2,3). Furthermore, we define for

each year y = 1, . . . ,10 the 3 × 4 empirical transition count matrix Ny = (N
y
jk)

with elements

N
y
jk = #{yi,t−1 = j, yit = k for some person i and some quarter t in year y},

for j = 1,2,3 and k = 1,2,3,4. For each y = 0,1, . . . ,10, we define the empirical
transition matrices Ñy := (N

y
jk/r

y
j ), where r

y
j := ∑4

k=1 N
y
jk are the row sums for

each j = 1,2,3. In our special application, we had all of these row sums greater
than zero except for those two rows in N0 whose sum is trivially equal to zero.
The matrix N̄ is then defined as the average over these 11 matrices,

N̄ = (N̄jk) :=
10∑

y=0

Ñy/11.
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The initial distribution πh follows a D(g0,1, . . . , g0,4) prior with g0,k :=
max{17N̄1k, 0.5}, whereas the rows ξhy,1·, . . . , ξhy,3· of each transition matrix
ξhy follow a D(e0,yj1, . . . , e0,yj4) prior with e0,yjk := max{17N̄jk, 0.5}.

Since the posterior distribution p(θH |y) does not have a closed form, Bayesian
inference is carried out by sampling M draws from p(θH |y), using Markov chain
Monte Carlo (MCMC) methods based on data augmentation—a method that has
been introduced for finite mixture models by Diebolt and Robert (1994). See
Gamerman and Lopes (2006) for a review of MCMC-based statistical inference
and Frühwirth-Schnatter (2006) for a review of MCMC estimation of mixture
models. The data augmentation technique underlying MCMC estimation also pro-
vides estimates of the latent class indicators S = (S1, . . . , SN).

After starting MCMC with some initial classification (partition) of the N sub-
jects into H disjoint classes, by assigning an initial value S0 to the latent cluster in-
dicators S = (S1, . . . , SN), the following steps are repeated during a burn-in period
to achieve convergence and additional M iteration steps are performed to produce
the desired number of draws:

(a) Sample the unknown parameters β2, . . . ,βH in the mixture-of-experts
model (4) from the conditional posterior distribution p(β2, . . . ,βH |S) ∝∏N

i=1 p(Si |β2, . . . ,βH )p(β2, . . . ,βH ).
(b) Sample the class-specific parameters ϑ1, . . . ,ϑH ; draw ϑh independently

from the conditional posterior distribution p(ϑh|S,y) ∝ ∏N
i=1 p(yi |ϑh)p(ϑh) for

each h = 1, . . . ,H .
(c) Bayes’ classification for each subject i; determine a random clustering

S = (S1, . . . , SN) of the N subjects into H classes by sampling, independently
for all i = 1, . . . ,N , Si from the discrete posterior distribution Pr(Si = 1|yi , ·),
. . . , Pr(Si = H |yi , ·) given by

(8)
Pr(Si = h|yi , θH ,X)

∝ p(yi |ϑh)Pr(Si = h|β2, . . . ,βH ,X), h = 1, . . . ,H,

where p(yi |ϑh) is the clustering kernel defined in (1) and X = xi .

For the mixture-of-experts model (4), the regression coefficients (β2, . . . ,βH) are
sampled in step (a) from the posterior distribution p(β2, . . . ,βH |S), where the
likelihood p(Si |β2, . . . ,βH ) is obtained from the MNL model (4) with X = xi . To
sample β2, . . . ,βH , we follow Frühwirth-Schnatter et al. (2012) and apply aux-
iliary mixture sampling in the differenced random utility model representation of
the MNL model [Frühwirth-Schnatter and Frühwirth (2010)], because this method
seems to be superior to other MCMC methods in terms of the effective sampling
rate.

Closed form Gibbs sampling of ϑh = (πh, ξh1, . . . , ξh,10) in Step (b) is pos-
sible, since the prior p(ϑh) is conditionally conjugate to the clustering kernel
p(yi |ϑh). For each cluster, the initial distribution πh and the various rows ξhy,j ·
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of the time-varying transition matrix ξhy are conditionally independent, given S
and y. In each cluster, the initial distribution πh is sampled from the Dirichlet
distribution,

(9) πh|S,y ∼ D
(
g0,1 + Ih

1 , . . . , g0,4 + Ih
4
)
,

where Ih
k := ∑

i:Si=h Ii,k is the total number of workers in cluster h being in state
k at the end of the first quarter after plant closure. Ih

k is the sum of the individual
indicators Ii,k , defined after (3) over all cluster members.

The various rows ξhy,j · are sampled row-by-row from a total of 30H Dirichlet
distributions;

ξhy,j ·|S,y ∼ D
(
e0,yj1 + Nh

y,j1, . . . , e0,yj4 + Nh
y,j4

)
,

y = 1, . . . ,10, j = 1, . . . ,3, h = 1, . . . ,H,

where Nh
y,jk := ∑

i:Si=h Niy,jk is the total number of transitions from state j into

state k observed in cluster h in period y. Nh
y,jk is the sum of the individual counts

Niy,jk , defined after (2) over all cluster members.
At the end of Step (b) the following smoothing procedure is applied to the tran-

sition probabilities. For each cluster h, for each row j and for each column k,
we apply a standard polynomial regression technique with a quadratic polynomial
[Draper and Smith (1998)] to smooth the ten time-varying transition probabilities
ξh1,jk, ξh2,jk, . . . , ξh10,jk over time. After this smoothing step, we consider each
row ξhy,j. of the smoothed transition matrices ξhy . Whenever one element of such
a row is below zero, that is, ξhy,jk < 0, it is set to zero (ξhy,jk = 0) and each row
ξhy,j. is normalized by ξhy,j./

∑4
k=1 ξhy,jk to ensure that all row sums are equal to

one as required for transition matrices.
We start MCMC estimation by choosing the initial values S0 for the cluster

indicators S through the following procedure. For each person i, we define a vector
qi containing the four indicators Ni0,k , where for each k = 1, . . . ,4,

Ni0,k :=
{

1 for yi,1 = k,

0 else

as well as all 120 empirical transition counts Ni1,jk and Niy,jk defined after for-
mula (2). Adding 0.5 to each element of qi gives the vector vi . Clustering all N

resulting vectors log(vi) into H clusters using the k-means algorithm gives the
desired initial classification S0.

To perform step (a) of our MCMC scheme, we also need starting values for the
parameters β2, . . . ,βH in the mixture-of-experts model in addition to S0. Given
both the covariate vectors xi for all N persons under consideration as well as the
initial classification vector S0, we are dealing with a multinomial logit regression
(MNL) model. We use the estimated coefficients of this MNL model as starting
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values for β2, . . . ,βH in our MCMC procedure. To this aim, we applied the func-
tion multinom from the R package nnet.

Like any mixture model, mixtures of Markov chain models are invariant to rela-
belling the clusters and, as a consequence, MCMC draws might suffer from label
switching. However, in our empirical application we are dealing with a large data
set, which typically leads to a clear separation of the various (equivalent) modes
of the posterior distribution [see, e.g., Frühwirth-Schnatter (2006), Chapter 3]. As
a consequence, postprocessesing of the MCMC draws did not reveal any signs of
label switching.

Acknowledgements. Thanks to Oliver Ruf, Guido Schwerdt and Bernhard
Schmidpeter for help with the data.
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