The Annals of Applied Probability

On one-dimensional Riccati diffusions

A. N. Bishop, P. Del Moral, K. Kamatani, and B. Rémillard

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This article is concerned with the fluctuation analysis and the stability properties of a class of one-dimensional Riccati diffusions. These one-dimensional stochastic differential equations exhibit a quadratic drift function and a non-Lipschitz continuous diffusion function. We present a novel approach, combining tangent process techniques, Feynman–Kac path integration and exponential change of measures, to derive sharp exponential decays to equilibrium. We also provide uniform estimates with respect to the time horizon, quantifying with some precision the fluctuations of these diffusions around a limiting deterministic Riccati differential equation. These results provide a stronger and almost sure version of the conventional central limit theorem. We illustrate these results in the context of ensemble Kalman–Bucy filtering. To the best of our knowledge, the exponential stability and the fluctuation analysis developed in this work are the first results of this kind for this class of nonlinear diffusions.

Article information

Source
Ann. Appl. Probab., Volume 29, Number 2 (2019), 1127-1187.

Dates
Received: November 2017
Revised: June 2018
First available in Project Euclid: 24 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1548298938

Digital Object Identifier
doi:10.1214/18-AAP1431

Mathematical Reviews number (MathSciNet)
MR3910025

Subjects
Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 60G52: Stable processes 93E11: Filtering [See also 60G35] 60G99: None of the above, but in this section

Keywords
Ensemble Kalman filters quadratic stochastic differential equations Ricatti diffusions uniform fluctuation estimates uniform stability estimates

Citation

Bishop, A. N.; Del Moral, P.; Kamatani, K.; Rémillard, B. On one-dimensional Riccati diffusions. Ann. Appl. Probab. 29 (2019), no. 2, 1127--1187. doi:10.1214/18-AAP1431. https://projecteuclid.org/euclid.aoap/1548298938


Export citation

References

  • [1] Abundo, M. (1997). On some properties of one-dimensional diffusion processes on an interval. Probab. Math. Statist. 17 277–310.
  • [2] Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129 2884–2903.
  • [3] Anderson, J. L. (2003). A local least squares framework for ensemble filtering. Mon. Weather Rev. 131 634–642.
  • [4] Anderson, J. L. and Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127 2741–2758.
  • [5] Bakry, D. (1986). Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète. C. R. Acad. Sci. Paris Sér. I Math. 303 23–26.
  • [6] Bakry, D. and Émery, M. (1985). Diffusions hypercontractives. In Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math. 1123 177–206. Springer, Berlin.
  • [7] Barthe, F. and Roberto, C. (2003). Sobolev inequalities for probability measures on the real line. Studia Math. 159 481–497.
  • [8] Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. Ann. Appl. Probab. 15 2422–2444.
  • [9] Bishop, A. N. and Del Moral, P. (2017). On the stability of Kalman–Bucy diffusion processes. SIAM J. Control Optim. 55 4015–4047.. Updated version available at arXiv:1610.04686.
  • [10] Bishop, A. N. and Del Moral, P. (2018). An explicit Floquet-type representation of Riccati aperiodic exponential semigroups. Available at arXiv:1805.02127.
  • [11] Bishop, A. N. and Del Moral, P. (2018). On the Stability of Matrix-Valued Riccati Diffusions. Available at arXiv:1808.00235.
  • [12] Bishop, A. N., Del Moral, P. and Niclas, A. (2017). A perturbation analysis of stochastic matrix Riccati diffusions. Available at arXiv:1709.05071.
  • [13] Bishop, A. N., Del Moral, P. and Niclas, A. (2017). An introduction to Wishart matrix moments. Available at arXiv:1710.10864.
  • [14] Bishop, A. N., Del Moral, P. and Pathiraja, S. D. (2018). Perturbations and projections of Kalman–Bucy semigroups. Stochastic Process. Appl. 128 2857–2904.
  • [15] Bismut, J.-M. (1976). Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 419–444.
  • [16] Burgers, G., van Leeuwen, P. J. and Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126 1719–1724.
  • [17] Cattiaux, P., Gozlan, N., Guillin, A. and Roberto, C. (2010). Functional inequalities for heavy tailed distributions and application to isoperimetry. Electron. J. Probab. 15 346–385.
  • [18] Chen, M.-F. (2005). Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications (New York). Springer London, Ltd., London.
  • [19] Cheng, L., Li, R. and Wu, L. (2017). Exponential convergence in the Wasserstein metric $w\_1$ for one dimensional diffusions. Available at arXiv:1703.00507.
  • [20] Cox, J. C., Ingersoll, J. E. Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53 385–407.
  • [21] de Acosta, A. (1982). Invariance principles in probability for triangular arrays of $B$-valued random vectors and some applications. Ann. Probab. 10 346–373.
  • [22] de Wiljes, J., Reich, S. and Stannat, W. (2018). Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise. SIAM J. Appl. Dyn. Syst. 17 1152–1181.
  • [23] Del Moral, P. (2013). Mean Field Simulation for Monte Carlo Integration. Monographs on Statistics and Applied Probability 126. CRC Press, Boca Raton, FL.
  • [24] Del Moral, P. and Tugaut, J. (2018). On the stability and the uniform propagation of chaos properties of ensemble Kalman–Bucy filters. Ann. Appl. Probab. 28 790–850.
  • [25] Doob, J. L. (1990). Stochastic Processes. Wiley Classics Library. Wiley, New York. Reprint of the 1953 original, A Wiley-Interscience Publication.
  • [26] Dudley, R. M. (1976). Probabilities and Metrics. Lecture Notes Series. Matematisk Institut, Aarhus Universitet, Aarhus.
  • [27] Dudley, R. M. (1989). Real Analysis and Probability. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.
  • [28] Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99 10143–10162.
  • [29] Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn. 53 343–367.
  • [30] Evensen, G. (2009). Data Assimilation: The Ensemble Kalman Filter, 2nd ed. Springer, Berlin.
  • [31] Feller, W. (1954). Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 1–31.
  • [32] Feller, W. (1954). The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. of Math. (2) 60 417–436.
  • [33] Fukushima, M. (2015). Feller’s contributions to the one-dimensional diffusion theory and beyond. In William Feller—Selected Papers II (R. L. Schilling, Z. Vondracek and W. A. Woyczynski, eds.) 63–76. Springer.
  • [34] Gentil, I., Guillin, A. and Miclo, L. (2005). Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133 409–436.
  • [35] Gozlan, N. (2012). Transport-entropy inequalities on the line. Electron. J. Probab. 17 18.
  • [36] Hamill, T. M., Whitaker, J. S. and Snyder, C. (2001). Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129 2776–2790.
  • [37] Houtekamer, P. L. and Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126 796–811.
  • [38] Houtekamer, P. L. and Mitchell, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129 123–137.
  • [39] Hu, Y. and Zhou, X. Y. (2003). Indefinite stochastic Riccati equations. SIAM J. Control Optim. 42 123–137.
  • [40] Hutzenthaler, M. and Jentzen, A. (2014). On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. Available at arXiv:1401.0295.
  • [41] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2011). Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 1563–1576.
  • [42] Iglesias, M. A., Law, K. J. H. and Stuart, A. M. (2013). Ensemble Kalman methods for inverse problems. Inverse Probl. 29 045001.
  • [43] Ikeda, N. and Watanabe, S. (1984). An introduction to Malliavin’s calculus. In Stochastic Analysis (Katata/Kyoto, 1982). North-Holland Math. Library 32 1–52. North-Holland, Amsterdam.
  • [44] Itô, K. and McKean, H. P. Jr. (1965). Diffusion Processes and Their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften, Band 125. Academic Press, New York; Springer, Berlin-New York.
  • [45] Kalnay, E. (2003). Atmospheric Modelling, Data Assimilation and Predictability. Cambridge Univ. Press, Cambridge.
  • [46] Kantorovič, L. V. and Rubinšteĭn, G. Š. (1958). On a space of completely additive functions. Vestnik Leningrad Univ. Math. 13 52–59.
  • [47] Kantorovich, L. V. and Akilov, G. P. (1982). Functional Analysis, 2nd ed. Pergamon Press, Oxford-Elmsford, NY.
  • [48] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York.
  • [49] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 399–432.
  • [50] Kelly, D. T. B., Law, K. J. H. and Stuart, A. M. (2014). Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time. Nonlinearity 27 2579–2604.
  • [51] Kohlmann, M. and Tang, S. (2003). Multidimensional backward stochastic Riccati equations and applications. SIAM J. Control Optim. 41 1696–1721.
  • [52] Law, K., Stuart, A. and Zygalakis, K. (2015). Data Assimilation: A Mathematical Introduction. Texts in Applied Mathematics 62. Springer, Cham.
  • [53] Law, K. J. H., Tembine, H. and Tempone, R. (2016). Deterministic mean-field ensemble Kalman filtering. SIAM J. Sci. Comput. 38 A1251–A1279.
  • [54] Le Gland, F., Monbet, V. and Tran, V.-D. (2011). Large sample asymptotics for the ensemble Kalman filter. In The Oxford Handbook of Nonlinear Filtering 598–631. Oxford Univ. Press, Oxford.
  • [55] Majda, A. J. and Tong, X. T. (2018). Performance of ensemble Kalman filters in large dimensions. Comm. Pure Appl. Math. 71 892–937.
  • [56] Mandel, J., Cobb, L. and Beezley, J. D. (2011). On the convergence of the ensemble Kalman filter. Appl. Math. 56 533–541.
  • [57] Mattingly, J. C., Stuart, A. M. and Higham, D. J. (2002). Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101 185–232.
  • [58] McKean, H. P. Jr. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 1907–1911.
  • [59] Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Math. 1627 42–95. Springer, Berlin.
  • [60] Muckenhoupt, B. (1972). Hardy’s inequality with weights. Studia Math. 44 31–38.
  • [61] Peskir, G. (2015). On Boundary Behaviour of One-Dimensional Diffusions: From Brown to Feller and Beyond. In William Feller—Selected Papers II (R. L. Schilling, Z. Vondracek and W. A. Woyczynski, eds.) 67–93. Springer.
  • [62] Reich, S. and Cotter, C. (2015). Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge Univ. Press, New York.
  • [63] Reich, S. and Cotter, C. J. (2013). Ensemble filter techniques for intermittent data assimilation. In Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences (M. Cullen, M. A. Freitag, S. Kindermann and R. Scheichl, eds.) 91–134. de Gruyter Publishers. See also: arXiv e-print (2012). Available at arXiv:1208.6572.
  • [64] Sakov, P. and Oke, P. R. (2008). A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus A 60 361–371.
  • [65] Schillings, C. and Stuart, A. M. (2017). Analysis of the ensemble Kalman filter for inverse problems. SIAM J. Numer. Anal. 55 1264–1290.
  • [66] Schillings, C. and Stuart, A. M. (2018). Convergence analysis of ensemble Kalman inversion: The linear, noisy case. Appl. Anal. 97 107–123.
  • [67] Shigekawa, I. (2013). On spectra of 1-dimensional diffusion operators. In Proceedings of the RIMS Kôkyûroku 1859, 59–75. Research Institute for Mathematical Sciences, Kyoto Univ.
  • [68] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M. I. and Sastry, S. S. (2004). Kalman filtering with intermittent observations. IEEE Trans. Automat. Control 49 1453–1464.
  • [69] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin.
  • [70] Taghvaei, A. and Mehta, P. G. (2016). An optimal transport formulation of the linear feedback particle filter. In Proc. of the 2016 American Control Conference (ACC), Boston, USA.
  • [71] Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M. and Whitaker, J. S. (2003). Ensemble square root filters. Mon. Weather Rev. 131 1485–1490.
  • [72] Tong, X. T., Majda, A. J. and Kelly, D. (2016). Nonlinear stability and ergodicity of ensemble based Kalman filters. Nonlinearity 29 657–691.
  • [73] Tong, X. T., Majda, A. J. and Kelly, D. (2016). Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation. Commun. Math. Sci. 14 1283–1313.
  • [74] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI.
  • [75] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin.
  • [76] Wu, L. (2001). Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. Stochastic Process. Appl. 91 205–238.
  • [77] Yang, T., Laugesen, R. S., Mehta, P. G. and Meyn, S. P. (2016). Multivariable feedback particle filter. Automatica J. IFAC 71 10–23.