The Annals of Applied Probability

Wright–Fisher diffusions in stochastic spatial evolutionary games with death–birth updating

Yu-Ting Chen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We investigate stochastic spatial evolutionary games with death–birth updating in large finite populations. Within growing spatial structures subject to appropriate conditions, the density processes of a fixed type are proven to converge to the one-dimensional Wright–Fisher diffusions. Convergence in the Wasserstein distance of the laws of the occupation measures also holds. The proofs study the convergences under certain voter models by an equivalence between their laws and the laws of the evolutionary games. In particular, the additional growing dimensions in minimal systems that close the dynamics of the game density processes are cut off in the limit.

As another application of this equivalence of laws, we consider a first-derivative test among the major methods for these evolutionary games in a large population of size $N$. Requiring only the assumption that the stationary probabilities of the corresponding voting kernel are comparable to uniform probabilities, we prove that the test is applicable at least up to weak selection strengths in the usual biological sense [i.e., selection strengths of the order $\mathcal{O}(1/N)$].

Article information

Source
Ann. Appl. Probab., Volume 28, Number 6 (2018), 3418-3490.

Dates
Received: May 2017
Revised: February 2018
First available in Project Euclid: 8 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1538985626

Digital Object Identifier
doi:10.1214/18-AAP1390

Mathematical Reviews number (MathSciNet)
MR3861817

Zentralblatt MATH identifier
06994397

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35] 60F05: Central limit and other weak theorems 60J60: Diffusion processes [See also 58J65]

Keywords
Voter model Wright–Fisher diffusion evolutionary game

Citation

Chen, Yu-Ting. Wright–Fisher diffusions in stochastic spatial evolutionary games with death–birth updating. Ann. Appl. Probab. 28 (2018), no. 6, 3418--3490. doi:10.1214/18-AAP1390. https://projecteuclid.org/euclid.aoap/1538985626


Export citation

References

  • [1] Aldous, D. J. (1982). Markov chains with almost exponential hitting times. Stochastic Process. Appl. 13 305–310.
  • [2] Aldous, D. J. and Fill, J. A. (2002). Reversible Markov chains and random walks on graphs. Unfinished monograph, recompiled 2014. Available at https://www.stat.berkeley.edu/~aldous/RWG/book.html.
  • [3] Allen, B., Lippner, G., Chen, Y.-T., Fotouhi, B., Momeni, N., Yau, S.-T. and Nowak, M. A. (2017). Evolutionary dynamics on any population structure. Nature 544 227–230.
  • [4] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 no. 23, 13.
  • [5] Bordenave, C. (2015). A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts. Preprint. Available at arXiv:1502.04482.
  • [6] Chen, Y.-T. (2013). Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 23 637–664.
  • [7] Chen, Y.-T. (2017). A remark for meeting times in large random regular graphs. Preprint. Available at arXiv:1711.00127.
  • [8] Chen, Y.-T., Choi, J. and Cox, J. T. (2016). On the convergence of densities of finite voter models to the Wright–Fisher diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 52 286–322.
  • [9] Chen, Y.-T. and Cox, J. T. (2017). Weak atomic convergence of finite voter models toward Fleming–Viot processes. Stochastic Process. Appl. 128 2463–2488.
  • [10] Chen, Y.-T., McAvoy, A. and Nowak, M. A. (2016). Fixation probabilities for any configuration of two strategies on regular graphs. Scientific Reports 6 39181.
  • [11] Cox, J. T. (1989). Coalescing random walks and voter model consensus times on the torus in $\mathbb{Z}^{d}$. Ann. Probab. 17 1333–1366.
  • [12] Cox, J. T., Durrett, R. and Perkins, E. A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 185–234.
  • [13] Cox, J. T., Durrett, R. and Perkins, E. A. (2013). Voter model perturbations and reaction diffusion equations. Astérisque 349 vi+113.
  • [14] Cox, J. T. and Perkins, E. A. (2004). An application of the voter model–Super-Brownian motion invariance principle. Ann. Inst. Henri Poincaré Probab. Stat. 40 25–32.
  • [15] Durrett, R. (2014). Spatial evolutionary games with small selection coefficients. Electron. J. Probab. 19 no. 121, 64.
  • [16] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence, 2nd ed. Wiley, New York.
  • [17] Evilsizor, S. and Lanchier, N. (2016). Evolutionary games on the lattice: Death–birth updating process. Electron. J. Probab. 21 Paper No. 17, 29.
  • [18] Friedman, J. (2008). A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc. 195 viii+100.
  • [19] Godsil, C. D. and McKay, B. D. (1980). Feasibility conditions for the existence of walk-regular graphs. Linear Algebra Appl. 30 51–61.
  • [20] Granovsky, B. L. and Madras, N. (1995). The noisy voter model. Stochastic Process. Appl. 55 23–43.
  • [21] Hod, R. (2016). Personal communication.
  • [22] Ibsen-Jensen, R., Chatterjee, K. and Nowak, M. A. (2015). Computational complexity of ecological and evolutionary spatial dynamics. Proc. Natl. Acad. Sci. USA 112 15636–15641.
  • [23] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin.
  • [24] Keilson, J. (1979). Markov Chain Models—Rarity and Exponentiality. Applied Mathematical Sciences 28. Springer, New York.
  • [25] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [26] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.
  • [27] Malécot, G. (1975). Heterozygosity and relationship in regularly subdivided populations. Theor. Popul. Biol. 8 212–241.
  • [28] Matsuda, H., Ogita, N., Sasaki, A. and Sato, K. (1992). Statistical mechanics of population: The lattice Lotka–Volterra model. Progr. Theoret. Phys. 88 1035–1049.
  • [29] McKay, B. D. (1981). The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40 203–216.
  • [30] Moran, P. A. P. (1958). Random processes in genetics. Math. Proc. Cambridge Philos. Soc. 54 60–71.
  • [31] Müller, C. and Tribe, R. (1995). Stochastic p.d.e.’s arising from the long range contact and long range voter processes. Probab. Theory Related Fields 102 519–545.
  • [32] Nanda, M. and Durrett, R. (2017). Spatial evolutionary games with weak selection. Proc. Natl. Acad. Sci. USA 114 6046–6051.
  • [33] Nowak, M. A., Tarnita, C. E. and Wilson, E. O. (2010). The evolution of eusociality. Nature 466 1057–1062.
  • [34] Ohtsuki, H., Hauert, C., Lieberman, E. and Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature 441 502–505.
  • [35] Ohtsuki, H. and Nowak, M. A. (2006). Evolutionary games on cycles. Proc Biol. Sci. 273 2249–2256.
  • [36] Oliveira, R. I. (2012). On the coalescence time of reversible random walks. Trans. Amer. Math. Soc. 364 2109–2128.
  • [37] Oliveira, R. I. (2013). Mean field conditions for coalescing random walks. Ann. Probab. 41 3420–3461.
  • [38] Revuz, D. and Yor, M. (2005). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin.
  • [39] Rousset, F. (2004). Genetic Structure and Selection in Subdivided Populations. Monographs in Population Biology 40. Princeton Univ. Press, Princeton, NJ.
  • [40] Sui, X., Wu, B. and Wang, L. (2015). Speed of evolution on graphs. Phys. Rev. E 92 062124.
  • [41] Vallender, S. S. (1974). Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. 18 784–786.
  • [42] Watanabe, S. (1964). On discontinuous additive functionals and Lévy measures of a Markov process. Japan J. Math. 34 53–70.