The Annals of Applied Probability

Dictator functions maximize mutual information

Georg Pichler, Pablo Piantanida, and Gerald Matz

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $(\boldsymbol{\mathsf{X}},\boldsymbol{\mathsf{Y}})$ denote $n$ independent, identically distributed copies of two arbitrarily correlated Rademacher random variables $(\mathsf{X},\mathsf{Y})$. We prove that the inequality $\mathrm{I}(f(\boldsymbol{\mathsf{X}});g(\boldsymbol{\mathsf{Y}}))\le \mathrm{I}(\mathsf{X};\mathsf{Y})$ holds for any two Boolean functions: $f,g\colon \{-1,1\}^{n}\to \{-1,1\}$ [$\mathrm{I}(\cdot ;\cdot)$ denotes mutual information]. We further show that equality in general is achieved only by the dictator functions $f(\boldsymbol{x})=\pm g(\boldsymbol{x})=\pm x_{i}$, $i\in \{1,2,\ldots,n\}$.

Article information

Source
Ann. Appl. Probab., Volume 28, Number 5 (2018), 3094-3101.

Dates
Received: September 2016
Revised: January 2018
First available in Project Euclid: 28 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1535443243

Digital Object Identifier
doi:10.1214/18-AAP1384

Mathematical Reviews number (MathSciNet)
MR3847982

Zentralblatt MATH identifier
06974774

Subjects
Primary: 94A15: Information theory, general [See also 62B10, 81P94]
Secondary: 94C10: Switching theory, application of Boolean algebra; Boolean functions [See also 06E30]

Keywords
Boolean functions mutual information Fourier analysis binary sequences binary codes

Citation

Pichler, Georg; Piantanida, Pablo; Matz, Gerald. Dictator functions maximize mutual information. Ann. Appl. Probab. 28 (2018), no. 5, 3094--3101. doi:10.1214/18-AAP1384. https://projecteuclid.org/euclid.aoap/1535443243


Export citation

References

  • [1] Anantharam, V., Gohari, A. A., Kamath, S. and Nair, C. (2013). On hypercontractivity and the mutual information between Boolean functions. In Proc. 51st Annual Allerton Conference on Communication, Control, and Computing 13–19.
  • [2] Courtade, T. A. and Kumar, G. R. (2014). Which Boolean functions maximize mutual information on noisy inputs? IEEE Trans. Inform. Theory 60 4515–4525.
  • [3] Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd ed. Wiley, Hoboken, NJ.
  • [4] Klotz, J. G., Kracht, D., Bossert, M. and Schober, S. (2014). Canalizing Boolean functions maximize mutual information. IEEE Trans. Inform. Theory 60 2139–2147.
  • [5] Kumar, G. R. and Courtade, T. A. (2013). Which Boolean functions are most informative? In Proc. IEEE Int. Symp. on Inform. Theory 226–230. DOI:10.1109/ISIT.2013.6620221.
  • [6] O’Donnell, R. (2014). Analysis of Boolean Functions. Cambridge Univ. Press, New York.
  • [7] Pichler, G. (2017). Clustering by mutual information. Ph.D. thesis, Vienna Univ. Technology.
  • [8] Roberts, A. W. and Varberg, D. E. (1973). Convex Functions. Pure and Applied Mathematics 57. Academic Press, New York.