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DICTATOR FUNCTIONS MAXIMIZE MUTUAL INFORMATION

BY GEORG PICHLER∗,1, PABLO PIANTANIDA† AND GERALD MATZ∗,1

Technische Universität Wien∗ and CentraleSupélec-CNRS-Université Paris-Sud†

Let (X, Y) denote n independent, identically distributed copies of two
arbitrarily correlated Rademacher random variables (X, Y). We prove that
the inequality I(f (X);g(Y)) ≤ I(X; Y) holds for any two Boolean functions:
f ,g : {−1, 1}n → {−1, 1} [I(·; ·) denotes mutual information]. We further
show that equality in general is achieved only by the dictator functions
f (x) = ±g(x) = ±xi , i ∈ {1, 2, . . . ,n}.

1. Introduction and main results. Let (X, Y) be two dependent Rademacher
random variables on {−1, 1}, with correlation coefficient ρ := E[XY] ∈ [−1, 1].
For given n ∈ N, let (X, Y) = (X, Y)n be n independent, identically distributed
copies of (X, Y). We will use the notation from [3] for information-theoretic quan-
tities. In particular, E[X], H(X) and I(X; Y) denote expectation, entropy and mutual
information, respectively. Motivated by problems in computational biology [4],
Kumar and Courtade formulated the following conjecture [5], Conjecture 1.

CONJECTURE 1. For any Boolean function f : {−1, 1}n → {−1, 1},
I
(
f (X); Y

) ≤ I(X; Y).(1)

This claim—while seemingly innocent at first sight—has received significant
interest and resisted several efforts to find a proof (see the discussion in [2],
Section IV). Note that f = χi for any dictator function ([6], Definition 2.3),
χi(x) := xi , i ∈ {1, 2, . . . ,n} achieves equality in (1).

We next state the main result of this paper, which is a relaxed version of Con-
jecture 1, involving two Boolean functions.

THEOREM 1. For any two Boolean functions f ,g : {−1, 1}n → {−1, 1},
I
(
f (X);g(Y)

) ≤ I(X; Y).(2)

If (1) were true, this statement would readily follow from the data processing
inequality [3], Theorem 2.8.1. Theorem 1 was stated as an open problem in [2] and

Received September 2016; revised January 2018.
1Supported by WWTF Grants ICT12-054 and ICT15-119.
MSC2010 subject classifications. Primary 94A15; secondary 94C10.
Key words and phrases. Boolean functions, mutual information, Fourier analysis, binary se-

quences, binary codes.

3094

http://www.imstat.org/aap/
https://doi.org/10.1214/18-AAP1384
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DICTATOR FUNCTIONS MAXIMIZE MUTUAL INFORMATION 3095

[5], Section IV, and separately investigated in [1]. A proof of (2) was previously
available only under the additional restrictive assumptions that f and g are equally
biased (i.e., E[f (X)] = E[g(X)]) and satisfy the condition

P
{
f (X) = 1,g(X) = 1

} ≥ P
{
f (X) = 1

}
P
{
g(X) = 1

}
.(3)

The reader is invited to see [2], Section IV, for further details. In this paper, we
use Fourier-analytic tools to prove Theorem 1 without any additional restrictions
on f and g. We suitably bound the Fourier coefficients of f and g, and thereby
reduce (2) to an elementary inequality, which is subsequently established. A more
detailed discussion of our results and proofs can be found in [7].

A careful inspection of the proof of Theorem 1 reveals that in general, up to
sign changes, the dictator functions χi , i ∈ {1, 2, . . . ,n} are the unique maximizers
of I(f (X);g(Y)).

PROPOSITION 1. If 0 < |ρ| < 1, equality in (2) is achieved if and only if f =
±g = ±χi for some i ∈ {1, 2, . . . ,n}.

2. Proof of Theorem 1. Define [n] := {1, 2, . . . ,n} and let f , g be two
Boolean functions on the Boolean hypercube, that is, f ,g : {−1, 1}n → {−1, 1}.
Denote their Fourier expansions (cf. [6], (1.6)) f (x) = ∑

S⊆[n] f̂SχS(x) and
g(x) = ∑

S⊆[n] ĝSχS(x), using the basis χS(x) := ∏
i∈S xi for S ⊆ [n]. Define

a := 1 + f̂∅

2
= P

{
f (X) = 1

}
,

b := 1 + ĝ∅

2
= P

{
g(X) = 1

}
and

θρ := 1

4

∑
S:|S|≥1

f̂S ĝSρ|S|.

Without loss of generality, we may assume 1
2 ≤ a ≤ b ≤ 1 and ρ ∈ [0, 1], as mutual

information is symmetric and we have, with Y∗ := sgn(ρ)Y,

I
(
f (X);g(Y)

) = I
(
sgn(f̂∅)f (X); sgn(ĝ∅)g

(
sgn(ρ)Y∗))

.(4)

In analogy to [6], Proposition 1.9, the inner product satisfies

〈f ,Tρg〉 = E
[
f (X)g(Y)

] = f̂∅ĝ∅ + 4θρ = 1 − 2P
{
f (X) 
= g(Y)

}
,(5)

where Tρ is the noise operator [6], Definition 2.46. Defining t̄ := 1− t for a generic
t , we can express the probabilities

P
{
f (X) = 1,g(Y) = −1

} = ab̄ − θρ ,

P
{
f (X) = g(Y) = 1

} = ab + θρ ,
(6)
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P
{
f (X) = −1,g(Y) = 1

} = āb − θρ ,

P
{
f (X) = g(Y) = −1

} = āb̄ + θρ .
(7)

Using (6), (7) and fundamental properties of mutual information [3], Section 2.4,
we obtain I(f (X);g(Y)) = ξ(θρ ,a,b) with

ξ(θ,a,b) :=H(a) + H(b) − H(ab + θ,ab̄ − θ, āb − θ, āb̄ + θ),(8)

where, slightly abusing notation, we defined the binary entropy function H(p) :=
H(p, p̄) and H((pi)i∈I) := −∑

i∈I pi log2 pi for |I| > 1. By the nonnegativity of
probabilities (6) and (7), for any ρ ∈ [0, 1],

−āb̄ ≤ θρ ≤ ab̄.(9)

With P := {S ⊆ [n] : f̂S ĝS > 0} \ {∅} and N := {S ⊆ [n] : f̂S ĝS < 0}, we define

τ+ := 1

4

∑
S∈P

f̂S ĝS , τ− := 1

4

∑
S∈N

f̂S ĝS(10)

and apply the Schwarz inequality to show

τ+ − τ− = 1

4

∑
S:|S|≥1

|f̂S ||ĝS |(11)

≤ 1

4

√(
1 − f̂ 2

∅

)(
1 − ĝ2

∅

) =
√

aābb̄.(12)

As θ1 = τ+ + τ−, we combine (9) and (12) to obtain

τ+ ≤ ab̄ +
√

aābb̄

2
, τ− ≥ − āb̄ +

√
aābb̄

2
.(13)

By definition, ρτ− ≤ θρ ≤ ρτ+, and hence, θρ ∈ [θ−
ρ , θ+

ρ ], where

θ−
ρ := max

{
−āb̄,−ρ

āb̄ +
√

aābb̄

2

}
,

θ+
ρ := min

{
ab̄,ρ

ab̄ +
√

aābb̄

2

}
.

(14)

The function ξ(θ ,α,β) is convex in θ by the concavity of entropy [3], Theo-
rem 2.7.3, and consequently, I(f (X);g(Y)) ≤ maxθ∈{θ+

ρ ,θ−
ρ } ξ(θ ,a,b). Thus, Theo-

rem 1 can be proved by establishing 1 − H(
ρ+1

2 ) − ξ(θ,a,b) ≥ 0 for θ ∈ {θ+
ρ , θ−

ρ }.
Furthermore, it suffices to consider 1

2 < a < b < 1 by continuity of ξ .

Define Ca,b := ab̄+
√

aābb̄
2 , ρ+ := min{ρ, ab̄

Ca,b
}, ρ− := min{ρ, āb̄

Cā,b
}, and

φ(ρ,a,b) := 1 − H
(

ρ + 1

2

)
− ξ(ρCa,b,a,b).(15)
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Note that

φ
(
ρ+,a,b

) = 1 − H
(

ρ+ + 1

2

)
− ξ

(
θ+
ρ ,a,b

)
(16)

≤ 1 − H
(

ρ + 1

2

)
− ξ

(
θ+
ρ ,a,b

)
(17)

by the monotonicity of the binary entropy function and accordingly we also have
φ(ρ−, ā,b) ≤ 1 − H(

ρ+1
2 ) − ξ(θ−

ρ ,a,b). Theorem 1 thus follows from the follow-
ing lemma.

LEMMA 1. For 0 < α < β < 1 and ρ ∈ [0, αβ̄
Cα,β

], we have φ(ρ,α,β) ≥ 0 with
equality if and only if ρ = 0.

Before proving Lemma 1, we note the following facts.

LEMMA 2. For x ∈ (0, 1), we have

1

x−1 − 1
+ log(1 − x) > 0.(18)

PROOF. Using Taylor series expansion, we immediately obtain

− log(1 − x) =
∞∑

n=1

xn

n
<

∞∑
n=1

xn = x

1 − x
.(19)

�

The following lemma collects elementary facts about convex/concave functions
and follows from elementary properties of convex functions on the real line (see,
e.g., [8], Chapter I).

LEMMA 3. Let f : U → R be a continuous function, defined on the compact
interval U := [u1,u2] ⊂ R. Assuming that f is twice differentiable on V , where
(u1,u2) ⊆ V ⊆ U , the following properties hold:

1. If f ′′(u) ≥ 0 for all u ∈ (u1,u2) and f ′(u∗) = 0 for some u∗ ∈ V , then
f (u) ≥ f (u∗) for all u ∈ U . Furthermore, if additionally f ′′(u) > 0 for all
u ∈ (u1,u2), then f (u) > f (u∗) for all u ∈ U\{u∗}.

2. If f ′′(u) ≤ 0 for all u ∈ (u1,u2), then f (u) ≥ min{f (u1),f (u2)} for all
u ∈ U . Furthermore, if f ′′(u) < 0 for all u ∈ (u1,u2), then f (u) > min{f (u1),
f (u2)} for all u ∈ (u1,u2).

PROOF OF LEMMA 1. Let I := {(α,β) ∈ R
2 : 0 < α < β < 1}, fix arbitrary

(α,β) ∈ I and define

ρ− := max{αβ, ᾱβ̄}
Cα,β

, ρ◦ := min{αβ, ᾱβ̄}
Cα,β

, ρ+ := αβ̄

Cα,β
.(20)
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We shall adopt the simplified notation φ(ρ) := φ(ρ,α,β), suppressing the fixed
parameters (α,β). For ρ ∈ [0,ρ+), we have the derivatives

φ′(ρ) = 1

2
log2

(
1 + ρ

1 − ρ

)
(21)

+ Cα,β log2

(
(ᾱβ − Cα,βρ)(αβ̄ − Cα,βρ)

(αβ + Cα,βρ)(ᾱβ̄ + Cα,βρ)

)
,

φ′′(ρ) = C2
α,β

log 2

(
1

C2
α,β(1 − ρ2)

− 1

ᾱβ − Cα,βρ
(22)

− 1

αβ̄ − Cα,βρ
− 1

ᾱβ̄ + Cα,βρ
− 1

αβ + Cα,βρ

)
.

We write φ′′(ρ) = p(ρ)
q(ρ)

, where both p and q are polynomials in ρ, and choose

q(ρ) = log(2)
(
1 − ρ2)

(ᾱβ − Cα,βρ)

× (αβ̄ − Cα,βρ)(ᾱβ̄ + Cα,βρ)(αβ + Cα,βρ),
(23)

such that q(ρ) > 0 for ρ ∈ [0,ρ+). By (22), p(ρ) is given by

p(ρ) = (ᾱβ − Cα,βρ)(αβ̄ − Cα,βρ)(ᾱβ̄ + Cα,βρ)(αβ + Cα,βρ)

− C2
α,β

(
1 − ρ2)(

(αβ̄ − Cα,βρ)(ᾱβ̄ + Cα,βρ)(αβ + Cα,βρ)

+ (ᾱβ − Cα,βρ)(ᾱβ̄ + Cα,βρ)(αβ + Cα,βρ)

+ (ᾱβ − Cα,βρ)(αβ̄ − Cα,βρ)(αβ + Cα,βρ)

+ (ᾱβ − Cα,βρ)(αβ̄ − Cα,βρ)(ᾱβ̄ + Cα,βρ)
)
.

(24)

This entails deg(p) ≤ 5 and a careful calculation of the coefficients reveals
deg(p) ≤ 3.

We will now demonstrate that there is a unique point ρ∗ ∈ (0,ρ+), such that
p(ρ∗) = 0. To this end, reinterpret φ′′(ρ) as a rational function of ρ on R. We
evaluate (24) and use α < β to obtain the two inequalities

p(0) = αᾱββ̄
(
αᾱββ̄ − C2

α,β
)
> 0(25)

and

p(ρ+) = −(
C2

α,β − (αβ̄)2)
(β − α)β̄α < 0.(26)

The number of roots of p in (0,ρ+) is thus odd and at most equal to its degree,
that is, either one or three. If we have ρ◦ ≤ 1, then evaluation of (24) readily yields
p(−ρ◦) ≤ 0. If, on the other hand, ρ◦ > 1, we obtain p(−ρ−) ≤ 0 from (24).
Thus, p has at least one negative root and a unique root ρ∗ ∈ (0,ρ+). Figure 1
qualitatively illustrate the behavior of p(ρ) and φ′′(ρ).
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FIG. 1. Sketch of p(ρ) and φ′′(ρ).

Consequently, φ′′(ρ) > 0 for ρ ∈ (0,ρ∗). By part 1 of Lemma 3, φ(ρ) > φ(0) =
0 for ρ ∈ (0,ρ∗] as φ′(0) = 0. Since φ′′(ρ) < 0 for ρ ∈ (ρ∗,ρ+), we have φ(ρ) >

min{φ(ρ∗),φ(ρ+)} for all ρ ∈ (ρ∗,ρ+), by part 2 of Lemma 3. In total, φ(ρ) >

min{0,φ(ρ+)} for ρ ∈ (0,ρ+).
As φ(0) = 0, it remains to show that φ(ρ+,α,β) > 0 for (α,β) ∈ I . To this end,

we introduce the transformation

(α,β) �−→ (c,x) :=
( log α

β

log αβ̄
ᾱβ

,

√
αβ̄

ᾱβ

)
,(27)

a bijective mapping from I to (0, 1)2 with the inverse

(c,x) �−→ (α,β) =
(

x2c − x2

1 − x2 ,
1 − x2−2c

1 − x2

)
.(28)

In terms of c and x, we have φ(ρ+,α,β) = ψ(c,x), where

ψ(c,x) := 1 − H
(

1

2
+ x

1 + x

)
− H

(
x2c − x2

1 − x2

)
+ 1 − x2−2c

1 − x2 H
(
x2c)(29)

= 1 − H
(

1 + 3x

2 + 2x

)
+ H(x2)

1 − x2 + x2cH(x2−2c) + x2−2cH(x2c)

x2 − 1
.(30)

We fix a particular x ∈ (0, 1) and use the simplified notation ψ(c) := ψ(c,x), ob-
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taining the derivatives

ψ ′(c) = 2 log(x)

(x2 − 1) log(2)

[
2x2cc log(x)

(31)
+ x2(1−c) log

(
1 − x2c) − x2c log

(
x2c − x2)]

,

ψ ′′(c) = 4 log(x)2x2c

(1 − x2) log(2)

[(
1

x−2(1−c) − 1
+ log

(
1 − x2(1−c)))

(32)

+ x2

x4c

(
log

(
1 − x2c) + 1

x−2c − 1

)]
.

By applying Lemma 2 twice, we obtain ψ ′′(c) > 0. Thus, ψ(c) > ψ(1
2) by part 1

of Lemma 3 as ψ ′(1
2) = 0. It remains to show that γ (x) := ψ(1

2 ,x) > 0. Note that
γ (0) = γ (1) = 0 and

γ ′(x) = 1

(1 + x)2 log2
[
(1 + 3x)(1 − x)

]
,(33)

for x ∈ [0, 1). If γ (x) ≤ 0 for any x ∈ (0, 1) then f necessarily attains its minimum
in (0, 1) and there exists x∗ ∈ (0, 1) with γ (x∗) ≤ 0 and γ ′(x∗) = 0. As x∗ = 2

3 is
the only point in (0, 1) with γ ′(x∗) = 0 and γ (2

3) = log2(
27
25) > 0, this concludes

the proof. �

3. Proof of Proposition 1. We may assume 0 < ρ < 1 and 1
2 ≤ a ≤ b ≤ 1 by

virtue of (4). Clearly, g = ±f = ±χi for some i ∈ [n] is a sufficient condition to
maximize I(f (X);g(Y)). A careful inspection of the proof of Theorem 1 shows
that this condition is also necessary.

In the following, we will use the notation of Section 2. As b = 1 implies
I(f (X);g(Y)) = 0, we assume 1

2 ≤ a ≤ b < 1. For equality in Theorem 1, we
need either φ(ρ+,a,b) = 0 or φ(ρ−, ā,b) = 0. By Lemma 1, φ(ρ−, ā,b) > 0
unless ā = a = 1

2 , which in turn implies φ(ρ−, ā,b) = φ(ρ+,a,b). The equality
φ(ρ+,a,b) = 0 can only occur for b = a, implying ρ+ = ρ. We want to show that
φ(ρ,a,a) = 0 implies a = 1

2 . For a 
= 1
2 , we have

∂φ

∂ρ
(ρ,a,a) = 1

2
log2

(
1 + ρ

1 − ρ

)
− aā log2

(
ρ

aāρ̄2 + 1
)

,(34)

∂2φ

∂ρ2 (ρ,a,a) = ρ(1 − 2a)2

log(2)(a + ρā)(1 − aρ̄)(1 − ρ2)
> 0.(35)

Part (1) of Lemma 3 now yields 0 = φ(0,a,a) < φ(ρ,a,a) as ∂φ
∂ρ

(0,a,a) = 0.

By the strict convexity of ξ(θ, 1
2 , 1

2) in θ, necessarily θρ = 〈f ,Tρg〉
4 ∈ {θ+

ρ , θ−
ρ } =

±ρ
4 . The Cauchy–Schwarz inequality, together with [6], Proposition 2.50, yields

ρ2 = 〈f ,Tρg〉2 = 〈T√
ρf ,T√

ρg〉2 ≤ 〈f ,Tρf 〉〈g,Tρg〉 ≤ ρ2. Thus, necessarily
g = ±f = ±χi for some i ∈ [n] by [6], Proposition 2.50.
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4. Discussion. The key idea underlying the proof of Theorem 1 is to split
θ1 = τ+ + τ− into its positive and negative part (see Section 2). After reducing
the problem to the inequality in Lemma 1, the remaining proof is routine analysis.
Lemma 1 might turn out to be useful in the context of other converse proofs, in
particular for the optimization of rate regions with binary random variables.
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