Asian Journal of Mathematics

Kähler manifolds with Ricci curvature lower bond

Gang Liu

Full-text: Open access

Abstract

On Kähler manifolds with Ricci curvature bounded from below, we establish some theorems which are counterparts of some classical theorems in Riemannian geometry, for example, Bishop-Gromov’s relative volume comparison, Bonnet-Meyers theorem, and Yau’s gradient estimate for positive harmonic functions. The tool is a Bochner type formula reflecting the Kähler structure.

Article information

Source
Asian J. Math., Volume 18, Number 1 (2014), 69-100.

Dates
First available in Project Euclid: 27 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.ajm/1409168513

Zentralblatt MATH identifier
1306.53023

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Keywords
Comparison theorem Kähler manifold

Citation

Liu, Gang. Kähler manifolds with Ricci curvature lower bond. Asian J. Math. 18 (2014), no. 1, 69--100. https://projecteuclid.org/euclid.ajm/1409168513


Export citation