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KÄHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND∗

GANG LIU†

Abstract. On Kähler manifolds with Ricci curvature bounded from below, we establish some
theorems which are counterparts of some classical theorems in Riemannian geometry, for example,
Bishop-Gromov’s relative volume comparison, Bonnet-Meyers theorem, and Yau’s gradient estimate
for positive harmonic functions. The tool is a Bochner type formula reflecting the Kähler structure.
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1. Introduction. In this paper we study some geometric quantities on Kähler
manifolds when the Ricci curvature has a lower bound. Our point of view is from
Riemannian geometry. To distinguish from the Riemannian case, we derive a Bochner
type formula reflecting the Kähler structure. One of the main results is the following:

Theorem 1. Let Mm(m > 1) be a complete Kähler manifold with Ric ≥ (2m−
1)k(k 6= 0) and denote Bx(r) to be the geodesic ball in M centered at x with radius r.
Let N be the 2m dimensional simply connected real space form with sectional curvature
k and denote BN (r) to be the geodesic ball in N with radius r. For any point p ∈M

and constants 0 < c < a < b, there exists a constant ǫ = ǫ(b, a,m, k) > 0 so that the
area of the geodesic spheres satisfies

A(∂Bp(b))

A(∂Bp(a))
≤ A(∂BN (b))

A(∂BN (a))
(1− ǫ).

Furthermore, if k = −1, then ǫ depends only on c, b− a,m.

Remark 1. When the bisectional curvature is bounded from below, P. Li and
J. Wang [8] proved the sharp version of theorem 1 comparing with the complex space
forms . However, if we only assume the Ricci curvature has a positive lower bound,
one cannot expect a sharp estimate of theorem 1 comparing with the complex space
forms. The example will be given in section 5.

Theorem 1 has several corollaries:

Corollary 1. Using the same notation as in theorem 1, we have

V ol(Bp(b))

V ol(Bp(a))
≤ V ol(BN (b))

V ol(BN (a))
(1 − ǫ)

where ǫ = ǫ(b, a,m, k) > 0. If k = −1, ǫ depends only on b− a, c,m.

Definition. Let (Mn, g) be a complete Riemannian manifold. Choose a point

p ∈ M , define the volume entropy of M to be h(M, g) = lim
r→+∞

lnV ol(Bp(r))
r

where

Bp(r) is the geodesic ball in M centered at p with radius r.
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Corollary 2. Let Mm(m > 1) be a complete Kähler manifold with Ric ≥
−(2m− 1), then the volume entropy h(M) satisfies

h(M) ≤ 2m− 1− ǫ

where ǫ is a positive constant depending only on m.

Corollary 3. Let Mm(m > 1) be a complete Kähler manifold with Ric ≥
(2m− 1), then the diameter d(M) satisfies

d(M) ≤ π − ǫ

where ǫ is a positive constant depending only on m.

Corollary 4. Under the same assumption as in theorem 1, let λ1 be the first
eigenvalue of the Laplacian with Dirichlet boundary condition, then we have

λ1(Bp(r)) ≤ λ1(BN (r)) − ǫ

where ǫ is a positive constant depending only on m, k and r.

Remark 2. The corollaries above are counterparts of Bishop-Gromov volume
comparison theorem [1], Bonnet-Meyers theorem [3], Cheng’s spectrum estimate [4].

Given a stronger condition in theorem 1, we can obtain a better result. Explicitly,
we have the following:

Theorem 2. Let Mm(m > 1) be a complete Kähler manifold with Ric ≥ (2m−
1)k, k 6= 0. Let N be the 2m dimensional simply connected real space form with
sectional curvature k . For a point p ∈M , denote rM (x) to be distance function from
p to x in M . Let rN be the distance function on N . If r ≤ i0

2 where i0 is the injective
radius at p, then

(1.1)
1

A(∂Bp(r))

∫

∂Bp(r)

∆rM ≤ ∆rN (r) − ǫ

where ǫ is a positive constant depending only on m, k and r. In particular, if p is a
pole, then (1.1) holds for any r > 0. In this case, if r ≥ c > 0, then there exists a
constant δ > 0 depending only on m, k, c such that ǫ > δ > 0.

When the metric is unitary invariant with respect to a point, we have the sharp
Laplacian comparison.

Theorem 3. LetMm(m > 1) be a complete Kähler manifold with Ric ≥ (m+1)k
and suppose the metric is unitary invariant with respect to p in M . Let Mk be the
complex space form with holomorphic bisectional curvature k. Denote rM (x) to be
distance function from p to x in M . Let rMk

be the distance function on Mk. Then
for any x ∈M , y ∈Mk with rM (x) = rMk

(y),

∆rM (x) ≤ ∆rMk
(y).

Remark 3. It is shown in [10] that in general, the sharp Laplacian comparison
does not hold comparing with the complex space forms.



KÄHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND 71

Finally, we have the counterpart of Yau’s gradient estimate [11] on Kähler mani-
folds:

Theorem 4. Let Mm(m > 1) be a complete Kähler manifold with Ric ≥
−(2m− 1). If f is a positive harmonic function on M , then

(1.2) |∇ log f | ≤ 2m− 1− ǫ

where ǫ is a positive constant depending only on m.

Remark 4. Yau’s gradient estimate is sharp in the Riemannian case, see [9].

We have organized this paper into five parts apart from the introduction. Section
2 is devoted to establishing the Bochner type formula (2.1) we will need in the sequel.
We prove theorem 1 and its corollaries, as well as theorem 2 in section 3. In section 4,
we give the proof to theorem 3. We also prove a sharp average Laplacian comparison
theorem under a condition slightly weaker than theorem 3. An example is given in
section 5 to show that if the Ricci curvature has a positive lower bound, the sharp
version of theorem 1 does not hold comparing with complex space forms. We shall
compare the example with the result in [8] by Li and Wang, as well as the local results
in [10]. The proof of theorem 4 is given in the last section.

Here are some notations in this paper. We shall use Einstein summation in this
paper. For a smooth function f on a manifold M , ∆f denotes the standard Beltrami

Laplacian if we use orthonormal frame; if we use unitary frame, then ∆f = fαβg
αβ

which is one half of the Beltrami Laplacian. For p ∈ M , Bp(r) denotes the geodesic
ball in M centered at p with radius r. V ol denotes the volume and A denotes the
area. Given a compact set K ∈M , −

∫

K
f is the average of the integral of f over K.

Acknowledgment. The author would like to express his deep gratitude to his
advisor, Professor Jiaping Wang for constant help and many valuable discussions
during the work. He also thanks Professor Peter Li for his interest in this work.

2. A Bochner type formula for functions on Kähler manifolds.

Proposition 1. LetMm(m > 1) be a complete Kähler manifold, m = dimC(M).
Let f ∈ C∞(M) and assume that ∇f(p) 6= 0 where p ∈M . Choosing a unitary frame
eα ∈ T 1,0(M)(α = 1, 2, ..m) near p so that e1 = 1√

2
(X −

√
−1JX) where X = ∇f

|∇f | ,

we have

(2.1)
1

2
〈∇f,∇(

∑

γ 6=1

fγγ)〉 = f11∆f − |fαβ|2 +Re(divY )

where Y =
∑

γ 6=1

fαfαγeγ, ∆f =
∑

α

fαα.

Proof. Recall the Bochner formula:

(2.2)
1

2
∆(|∇f |2) = |fαβ|2 + |fαβ |2 + (∆f)αfα + (∆f)αfα +Ricαβfαfβ.

(2.2) can be decomposed into two parts, namely,

(2.3) (fαfαβ)β = |fαβ |2 + (∆f)αfα,

(2.4) (fαfαβ)β = |fαβ|2 + (∆f)αfα +Ricαβfαfβ .
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Define a vector field

Z = fαfα1e1,

then (2.3) becomes

(2.5) divY + divZ = |fαβ|2 + (∆f)αfα.

Now we compute
(2.6)

Re(divZ) = Re(
∑

β 6=1

〈∇eβ (fαfα1e1), eβ〉+ 〈∇e1 (fαfα1e1), e1〉)

= Re(
∑

β 6=1

fα1〈∇eβ (fαe1), eβ〉+ fα1〈∇e1 (fαe1), e1〉+ e1(fα1)〈fαe1, e1〉)

= f11∆f +
1

2
〈∇f,∇(f11)〉.

Plugging (2.6) in (2.5), we find

1

2
〈∇f,∇(

∑

γ 6=1

fγγ)〉 = f11∆f − |fαβ |2 +Re(divY ).

This completes the proof of proposition 1.

Remark 5. Note that in (2.1), it is assumed that ∇f 6= 0 at p. In some
applications, we will multiply (2.1) on both side by cut-off functions and do integration
by parts. We can justify the integration by approximation of Morse functions, no
matter whether ∇f is vanishing somewhere.

3. Relative volume comparison. In this section we are going to prove theorem
1 and its corollaries, together with theorem 2. First we shall prove the corollaries in
the introduction assuming theorem 1.

Proof of Corollary 1. Suppose for sufficiently small ǫ,

(3.1)
V ol(Bp(b))

V ol(Bp(a))
≥ V ol(BN (b))

V ol(BN (a))
(1− ǫ).

We have

(3.2)

V ol(Bp(b))

V ol(Bp(a))
=
V ol(Bp(

a+b
2 ))

V ol(Bp(a))
+
A(∂(Bp(

a+b
2 )))

V ol(Bp(a))

b
∫

a+b
2

A(∂(Bp(r)))

A(∂(Bp(
a+b
2 )))

dr

≤ V ol(BN (a+b
2 ))

V ol(BN (a))
+
A(∂(Bp(

a+b
2 )))

V ol(Bp(a))

b
∫

a+b
2

A(∂(BN (r)))

A(∂(BN (a+b
2 )))

dr.

Putting (3.2), (3.1) together, after some manipulation, we find

(3.3)
A(∂(Bp(

a+b
2 )))

V ol(Bp(a))
≥ A(∂(BN (a+b

2 )))

V ol(BN (a))
(1− δ1).
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Also note that

(3.4)

V ol(Bp(a))

A(∂(Bp(
a+b
2 )))

=
A(∂(Bp(a)))

A(∂(Bp(
a+b
2 )))

a
∫

0

A(∂(Bp(r)))

A(∂(Bp(a)))
dr

≥ A(∂(Bp(a)))

A(∂(Bp(
a+b
2 )))

a
∫

0

A(∂(BN (r)))

A(∂(BN (a)))
dr.

Combining (3.3), (3.4) together, we get

(3.5)
A(∂(Bp(

a+b
2 )))

A(∂(Bp(a)))
≥ A(∂(BN (a+b

2 )))

A(∂(BN (a)))
(1− δ2).

In (3.3), (3.5), δ1, δ2 are positive constants depending only on ǫ, a, b,m, k. Moreover,
lim
ǫ→0

δi = 0 for i = 1, 2. If k = −1, δi depends only on ǫ, b− a, c,m.

If ǫ is sufficiently small, (3.5) contradicts theorem 1.

Proof of Corollary 2. Let N be the 2m dimensional real space form with constant
sectional curvature −1. Taking ai = i, bi = i + 1 in corollary 1 for i = 1, 2, ...., we
have

(3.6)
V ol(Bp(i + 1))

V ol(Bp(i))
≤ (1− ǫi)

V ol(BN (i + 1))

V ol(BN (i))
.

According to corollary 1, there exists a positive constant δ such that ǫi > δ for all
i ≥ 1. Therefore (3.6) becomes

(3.7)
V ol(Bp(i+ 1))

V ol(Bp(i))
≤ (1− δ)

V ol(BN (i+ 1))

V ol(BN (i))
.

By iteration of (3.7), it follows that

(3.8)
V ol(Bp(i))

V ol(Bp(1))
≤ (1− δ)i−1 V ol(BN (i))

V ol(BN (1))
.

Thus

(3.9)

lnV ol(Bp(i))

i
≤ i− 1

i
ln(1− δ) +

lnV ol(BN (i))

i

+
lnV ol(Bp(1))

i
− V ol(BN (1))

i
.

When i→ ∞, the RHS of (3.9) is approaching 2m−1+ ln(1− δ). This completes
the proof of corollary 2.

Proof of Corollary 3. Let S2m be the 2m dimensional sphere with constant sec-
tional curvature 1. Assuming d(M) = d, we pick two points p, q ∈ M such that
dist(p, q) = d(M). According to corollary 1, there exists a positive constant ǫ such
that

V ol(Bp(
d
2 ))

V ol(Bp(d))
≥ V ol(BS2m(d2 ))

V ol(BS2m(d))
(1 + ǫ),
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V ol(Bq(
d
2 ))

V ol(Bq(d))
≥ V ol(BS2m(d2 ))

V ol(BS2m(d))
(1 + ǫ).

Therefore

(3.10)

1 ≥ V ol(Bp(
d
2 )) + V ol(Bq(

d
2 ))

V ol(M)

≥ 2(1 + ǫ)
V ol(BS2m(d2 ))

V ol(BS2m(d))
.

If d is sufficiently close to π, the right hand side of (3.10) is greater than 1. This
is a contradiction.

Remark 6. The counterexample in section 5 shows that when Ric ≥ 2m − 1,
the diameter of the Kähler manifold could exceed that of CPm. The corollary says the
diameter of the Kähler manifold can not be too close to that of S2m.

Proof of Corollary 4. We use the same notation as in theorem 1. Denote the area
of the geodesic sphere ∂Bp(r) by A(r), the volume of the geodesic ball Bp(r) by V (r).
Denote λ1(BN (r)) by λ1 and let f be the nonnegative eigenfunction to the equation

∆f = −λ1f

on BN (r) with Dirichlet boundary condition. After normalization, we may assume
∫

BN (r) f
2 = 1. It is easy to see that f is a radical function. Pulling f back to the

tangent space of p, via the exponential map, we may assume that f is defined on
Bp(r).

Suppose there is small constant ǫ such that

λ1(Bp(r)) ≥ λ1 − ǫ,

then we have the inequality

(3.11) λ1 − ǫ ≤
∫

Bp(r)
|∇f |2

∫

Bp(r)
f2

.

Using integration by parts, we find

(3.12)

∫

B(P,r)(λ1f +∆f)f
∫

Bp(r)
f2

≤ ǫ.

By Cheng’s argument in [4],

λ1f +∆f ≥ 0

in Bp(r). It is simple to see that f is strictly between two positive constants in Bp(
r
2 ).
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By (3.12), we have

(3.13)

( min
Bp(

r
2
)
f)

∫

Bp(
r
2
)(λ1f +∆f)

V ( r2 )
≤

∫

Bp(
r
2
) f(λ1f +∆f)

V ( r2 )

≤
∫

Bp(r)
f(λ1f +∆f)

V ( r2 )

≤ ǫ

∫

Bp(r)
f2

V ( r2 )

≤ ǫ(max
Bp(r)

f2)
V (r)

V ( r2 )

≤ C(r, k,m)ǫ max
Bp(r)

f2.

Therefore, we conclude

(3.14)
−
∫

B(P, r
2
)

(λ1f +∆f) ≤ C(r, k,m)ǫ

max
Bp(r)

f2

min
Bp(

r
2
)
f

= δ(ǫ, r, k,m).

Noting that f is a function of r and f ′ ≤ 0, we have

(3.15)

−
∫

B(P, r
2
)

λ1f = λ1

∫ r
2

0 f(t)A(t)dt

V ( r2 )

= λ1f(
r

2
) + λ1

∫ r
2

0

(−f ′(t))
V (t)

V ( r2 )
dt

≥ C(r)

where

C(r) = λ1f(
r

2
) + λ1

∫ r
2

0

(−f ′(t))
V olN (t)

V olN ( r2 )
dt.

In the last inequality of (3.15), we have applied the Bishop-Gromov volume compari-
son. Using the divergence theorem, we have

(3.16) −
∫

B(P, r
2
)

∆f = f ′(
r

2
)
A( r2 )

V ( r2 )
.

Combining (3.14), (3.15), (3.16), we obtain

(3.17)
A( r2 )

V ( r2 )
≥ C(r) − δ

(−f ′( r2 ))
=

A(BN ( r2 ))

V ol(BN ( r2 ))
− δ

where δ, δ are small constants depending on ǫ,m, k, r.
If ǫ is very small, δ is small. (3.17) contradicts theorem 1.

Proof of Theorem 1. We consider the case Ric ≥ −(2m− 1) first.
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Let n = 2m. For x ∈ M , define r(x) = d(x, p). Choose an orthonormal frame hi
(i = 1, 2, ..2m) near x so that h1 = ∇r and Jh2α−1 = h2α for 1 ≤ α ≤ m. Define a
unitary frame {eα} so that eα = 1√

2
(h2α−1 −

√
−1h2α). Let ω

i be the dual 1-form of

hi. Define a tensor S near x such that

(3.18)

S = Sijω
i ⊗ ωj

= coth r
∑

i6=1

ωi ⊗ ωi.

It is simple to see that the tensor S is independent of the frame hi, moreover, S
is the Hessian of the distance function in real space form with sectional curvature −1.
After the complexification, we find

(3.19) Sαβ =







0 α 6= β

coth r α = β, α 6= 1
1
2 coth r α = β = 1.

We introduce the proposition as follows:

Proposition 2. Let Mn be a complete Riemannian manifold such that Ric ≥
−(n − 1), p ∈ M be a point. Define N to be the n dimensional real space form with
constant sectional curvature −1. Given constants b > a > c > 0, ǫ > 0, if the area of
the geodesic spheres satisfies

(3.20)
A(∂Bp(b))

A(∂Bp(a))
≥ A(∂BN (b))

A(∂BN (a))
− ǫ,

there exists positive constants δ, C and a smooth function w defined in the annulus
T = {x ∈M | 3a+2b

5 ≤ d(x, p) ≤ 2a+3b
5 } so that

(3.21)
−
∫

T

(|∇w −∇r|2 +
∑

i,j

|wij − Sij |2) < δ(b − a, c, n, ǫ),

|∇w| < C(b− a, c, n).

Moreover,

lim
ǫ→0

δ(b − a, n, c, ǫ) = 0.

Remark 7. Proposition 2 originates from Cheeger and Colding’s paper [2]. Their
estimate depends on both the upper bound and lower bound of a and b which is not
sufficient to prove corollary 2.

Proof. For notational convenience, in the proof of proposition 2, δ denotes small
positive constants depending only on ǫ, c, b − a, n. C denotes positive constants de-
pending only on c, b− a, n. Moreover, lim

ǫ→0
δ = 0.

Define ∆,∇ to be the Laplacian and the covariant derivatives in N . Pick a point
p in N , define

A(a, b) = {x ∈M |a ≤ d(x, p) ≤ b},
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A(a, b) = {y ∈ N |a ≤ d(y, p) ≤ b}.

We solve the equation

(3.22) ∆g = 0

in A(a, b) satisfying the boundary condition g(x) = 2 on ∂B(p, a), g(x) = 1 on
∂B(P , b). Then g is a radical function, say, g = φ(r). Pulling g back to the tangent
space of p, via the exponential map, we may assume that g is defined in A(a, b). It
is simple to check that g is strictly decreasing with respect to r, therefore g−1 exists.
Moreover,

(3.23) g, |g′|, |g′′|, |(g−1)′|, |(g−1)′′| < C.

Similarly we solve the equation

(3.24) ∆g = 0

in A(a, b) satisfying the same boundary condition as g.

Claim 1.

(3.25)

| A(∂Bp(a))

V ol(A(a, b))
− A(∂Bp(a))

V ol(A(a, b))
| < δ,

| A(∂Bp(b))

V ol(A(a, b))
− A(∂Bp(b))

V ol(A(a, b))
| < δ.

Proof. Claim 1 follows from (3.20) and Bishop-Gromov volume comparison.

The following claim is due to J. Cheeger and T. Colding [2]:

Claim 2.

(3.26) −
∫

A(a,b)

|∇g −∇g|2 ≤ δ.

Proof. By maximum principle, |g − g| ≤ 2 in A(a, b). By Laplacian comparison
and (3.22), we have ∆g ≥ 0, since g is decreasing with respect to r. Using integration
by parts, we have

−
∫

A(a,b)

|∇g −∇g|2 = −−
∫

A(a,b)

(g − g)∆(g − g)

≤ 2−
∫

A(a,b)

∆g

≤ 2

∫

∂A(a,b)
∂g
∂n
ds

V ol(A(a, b))

= 2(g′(b)
A(∂Bp(b))

V ol(A(a, b))
− g′(a)

A(∂Bp(a))

V ol(A(a, b))
)

≤ δ.

In the last inequality, we have applied claim 1.
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The claim below comes from P. Li and R. Schoen in [7] and J. Cheeger and T.
Colding [2]:

Claim 3. For Dirichlet boundary condition on A(a, b), the first eigenvalue λ1 ≥
C.

Proof. Given a constant µ > 0, define f = (b+ 1− r)µ in A(a, b). Then

∆f = µ(µ− 1)(b+ 1− r)µ−2 − µ(b+ 1− r)µ−1∆r,

|∇f | = µ(b+ 1− r)µ−1.

Taking µ large, from the Laplacian comparison theorem, we may assume that

∆f ≥ 1, |∇f | ≤ C

in A(a, b).
For any function h ∈ C∞

c (A(a, b)),

∫

A(a,b)

h2 ≤
∫

A(a,b)

h2∆f

= −2

∫

A(a,b)

h〈∇f,∇h〉

≤ 2C

∫

A(a,b)

|h||∇h|

≤ 2C(

∫

A(a,b)

h2)
1
2 (

∫

A(a,b)

|∇h|2) 1
2 .

Therefore λ1 ≥ 1
4C2 . This proves claim 3.

Combining claim 2 and claim 3, one concludes that

(3.27) −
∫

A(a,b)

|g − g|2 ≤ δ.

Let a1 = 4a+b
5 , a2 = 3a+2b

5 , b2 = 2a+3b
5 , b1 = a+4b

5 , so a < a1 < a2 < b2 < b1 < b.
Since g is a positive harmonic function in A(a, b), by the gradient estimate of Cheng
and Yau [5], we have

(3.28) |∇g| ≤ Cg ≤ 2C

in A(a1, b1). By a simple calculation, one can find a function ψ(r) so that

∇2
ψ(r) =

1

n
∆(ψ(r)),

ψ(a) = 1, ψ′(a) = 1

in A(a, b). It is easy to see ψ is strictly increasing with respect to r, therefore ψ−1

exists. Moreover,

(3.29) |ψ|, |ψ′|, |ψ′′|, |(ψ−1)′|, |(ψ−1)′′|, |(ψ−1)′′′| < C.
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For x ∈ Aa,b, define

(3.30) u(x) = ψ ◦ g−1 ◦ g(x), u(x) = ψ ◦ g−1 ◦ g(x) = ψ(r(x)),

then by (3.23), (3.28), (3.29),

(3.31) |∇u| ≤ C

in A(a1, b1).
The Bochner formula for u(x) is

1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇∆u〉+Ric(∇u,∇u).

Since Ric ≥ −(n− 1), we can rewrite it as

(3.32)
1

2
∆|∇u|2 − 〈∇∆u,∇u〉 − 1

n
(∆u)2 + (n− 1)〈∇u,∇u〉 ≥ |∇2u− 1

n
∆u|2.

Now we want to get the estimate of the Hessian of u.
We will multiply both side of (3.32) by a cut-off function and do integration by

parts.
In [2], Cheeger and Colding choose the cut-off function to be a function of g. To

make that work, the upper bound of a is needed. To avoid this problem, we define
the cut-off function ϕ to be a function of r, explicitly,

(3.33) ϕ(r) =























0 a ≤ r < a1
r−a1

a2−a1
a1 ≤ r ≤ a2

1 a2 ≤ r ≤ b2
b1−r
b1−b2

b2 < r < b1
0 b1 ≤ r ≤ b.

Define

(3.34) ϕ(x) = ϕ ◦ g−1 ◦ g
in A(a, b). From claim 2, (3.23), (3.27), (3.28), it is easy to see that

(3.35) −
∫

A(a,b)

|∇ϕ−∇ϕ|2 + |ϕ− ϕ|2 ≤ δ.

Multiplying (3.32) on both side by ϕ2 and using integration by parts, we find

(3.36)

1

V ol(A(a1, b1))

∫

A(a1,b1)

−1

2
〈∇ϕ2,∇|∇u|2〉+ ϕ2(∆u)2 + 2ϕ∆u〈∇ϕ,∇u〉

− 1

n
ϕ2(∆u)2 + (n− 1)ϕ2|∇u|2 ≥ 1

V ol(A(a1, b1))

∫

A(a1,b1)

ϕ2|∇2u− 1

n
∆u|2.

Let us write the first term of (3.36) as

(3.37)

− 1

V ol(A(a1, b1))

∫

A(a1,b1)

1

2
〈∇ϕ2,∇|∇u|2〉

= −1

2
−
∫

A(a1,b1)

(ϕ2)i(u
2
j)i

= −2−
∫

A(a1,b1)

ϕϕiujuji

= −2(−
∫

A(a1,b1)

ϕ(ϕi − ϕi)ujuji +−
∫

A(a1,b1)

ϕϕiujuji).
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We will estimate the two terms in the RHS of (3.37) separately. Using (3.31),
(3.35), we find

(3.38)

| − 2−
∫

A(a1,b1)

ϕ(ϕi − ϕi)ujuji|

≤ 2−
∫

A(a1,b1)

|ϕ||∇ϕ−∇ϕ||∇u||uji|

≤ C−
∫

A(a1,b1)

ϕ|∇ϕ−∇ϕ||∇2u|

≤ C(−
∫

A(a1,b1)

|∇ϕ−∇ϕ|2) 1
2 (−
∫

A(a1,b1)

ϕ2|∇2u|2) 1
2

≤ δ(−
∫

A(a1,b1)

ϕ2|∇2u|2) 1
2

≤ 1

2
(δ + δ−

∫

A(a1,b1)

ϕ2|∇2u|2).

In (3.38) we may assume that ǫ is so small that δ ≤ 1
2 . For the other term on the

RHS of (3.37), integration by parts gives

(3.39)

−2−
∫

A(a1,b1)

ϕϕiujuji = −−
∫

A(a1,b1)

ϕϕi(u
2
j)i

= −
∫

A(a1,b1)

ϕiϕiu
2
j +−

∫

A(a1,b1)

ϕϕiiu
2
j

= −
∫

A(a1,b1)

〈∇ϕ,∇ϕ〉|∇u|2 + ϕ∆ϕ|∇u|2.

Plugging (3.38) and (3.39) in (3.37), we find that

(3.40)

−
∫

A(a1,b1)

{〈∇ϕ,∇ϕ〉|∇u|2 + ϕ∆ϕ|∇u|2 + 1

2
δ +

1

2
δϕ2|∇2u|2 + ϕ2(∆u)2

+ 2ϕ∆u〈∇ϕ,∇u〉 − 1

n
ϕ2(∆u)2 + (n− 1)ϕ2|∇u|2}

≥ −
∫

A(a1,b1)

ϕ2|∇2u− 1

n
∆u|2.

We can rewrite (3.40) as

(3.41)

−
∫

A(a1,b1)

{〈∇ϕ,∇ϕ〉|∇u|2 + ϕ∆ϕ|∇u|2 + 1

2
δ +

δ

2n
ϕ2(∆u)2 + ϕ2(∆u)2

+ 2ϕ∆u〈∇ϕ,∇u〉 − 1

n
ϕ2(∆u)2 + (n− 1)ϕ2|∇u|2}

≥ (1− δ

2
)−
∫

A(a1,b1)

ϕ2|∇2u− 1

n
∆u|2

≥ (1− δ

2
)
V ol(A(a2, b2))

V ol(A(a1, b1))
−
∫

A(a2,b2)

|∇2u− 1

n
∆u|2

≥ C−
∫

A(a2,b2)

|∇2u− 1

n
∆u|2.
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We claim that up to a negligible error, we can replace all functions on the LHS
of (3.41) by the corresponding radical functions, namely,

∇ϕ −→ ∇ϕ,

∇u −→ ∇u,

∆ϕ −→ (ϕ ◦ g−1)′′|∇g|2,

∆u −→ (ψ ◦ g−1)′′|∇g|2.

To justify the above substitution we use the following standard lemma:
Lemma. Let k1, ..., kN , k1, .., kN be functions on a measure space U such that for

all i,

Sup(|ki|+ |ki|) ≤ C,

∫

U

|ki − ki| ≤ ǫ,

then
∫

U

|k1 · · · kN − k1 · · · kN | ≤ NCN−1ǫ.

Proof. If we write

k1 · · · kN − k1 · · · kN = (k1 − k1)k2 · · · kN

+

N−2
∑

i=1

k1 · · · ki(ki+1 − ki+1)ki+2 · · · kN

+ k1 · · · kN−1(kN − kN ),

then the conclusion is obvious.

It is simply to see that the area of the geodesic sphere in A(a, b) satisfies a pinching
estimate:

(3.42)
A(∂BN (b))

A(∂BN (a))
≥ A(∂Bp(b))

A(∂Bp(a))
≥ A(∂BN (b))

A(∂BN (a))
− δ.

Therefore, after the replacement of functions, the LHS of (3.41) is very small.
Thus we have

(3.43) −
∫

A(a2,b2)

|∇2u− 1

n
∆u|2 ≤ δ.

Since ∆g = 0, it follows from (3.23), (3.27), (3.28), (3.29), (3.30) and claim 2 that

(3.44) −
∫

A(a1,b1)

|∆u− (ψ ◦ g−1)′′|∇g|2|2 ≤ δ.
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Also note

(ψ ◦ g−1)′′|∇g|2 = ∆u

and

∇2
u =

1

n
∆u,

therefore

(3.45) −
∫

A(a2,b2)

|∇2u−∇2
u|2 ≤ δ.

Let us define

(3.46) w = ψ−1 ◦ u = g−1 ◦ g,

Putting claim 2, (3.27), (3.29), (3.31), and (3.45) together, we find

(3.47) −
∫

A(a2,b2)

∑

i,j

|wij − Sij |2 ≤ δ

where we have used the fact that S is the pull back of the Hessian of the distance
function from N .

It follows from (3.29) and (3.31) that

(3.48) |∇w| ≤ C.

in A(a1, b1).
Putting (3.23) and claim 2 together, we find

(3.49) −
∫

A(a1,b1)

|∇w −∇r|2 ≤ δ.

Combining (3.47), (3.48) and (3.49), we complete the proof of proposition 2.
Now we are ready to prove theorem 1. If there exists a small constant ǫ > 0 such

that

(3.50)
A(∂BP (b))

A(∂BP (a))
≥ A(∂BN (b))

A(∂BN (a))
(1− ǫ),

according to proposition 2, there exists a smooth function w in T = A(3a+2b
5 , 2a+3b

5 )

such that (3.21) holds. For simplicity, we write a1 = 3a+2b
5 , b1 = 2a+3b

5 , a2 =
2a1+b1

3 , b2 = a1+2b1
3 (note that our notation is a little bit different from proposition

2).
Applying (2.1) to w, we find

(3.51)
1

2
〈∇w,∇(

∑

γ 6=1

wγγ)〉 − (w11∆w − |wαβ |2 +Re(divY )) = 0

where Y =
∑

γ 6=1

wαwαγeγ . Let ϕ(r) to be the Lipschitz cut-off function in the annulus

T depending only on the distance to p, given by

(3.52) ϕ(r) =







r−a1

a2−a1
a1 ≤ r ≤ a2

1 a2 < r < b2
b1−r
b1−b2

b2 ≤ r ≤ b1.



KÄHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND 83

Multiplying ϕ on both sides of (3.51), we integrate in the annulus T and take the
average. It follows that

(3.53)
1

2
−
∫

T

ϕ〈∇w,∇(
∑

γ 6=1

wγγ)〉 − −
∫

T

{ϕw11∆w − |wαβ |2 + ϕRe(divY )} = 0.

Using integration by parts, we find

(3.54)
1

2
−
∫

T

ϕ〈∇w,∇(
∑

γ 6=1

wγγ)〉 = −−
∫

T

ϕ∆w
∑

γ 6=1

wγγ − 1

2
−
∫

T

∑

γ 6=1

wγγ〈∇w,∇ϕ〉,

(3.55)

−
∫

T

ϕ(w11∆w − |wαβ |2) + ϕRe(divY ) = −
∫

T

ϕ(w11∆w − |wαβ |2)

−Re−
∫

T

∑

γ 6=1

ϕγwαwαγ .

Note that in (3.54) and (3.55), ∆w is one half of the real Laplacian of w.
Therefore

(3.56)

−−
∫

T

ϕ∆w
∑

γ 6=1

wγγ − 1

2
−
∫

T

∑

γ 6=1

wγγ〈∇w,∇ϕ〉

− −
∫

T

ϕ(w11∆w − |wαβ |2) +Re−
∫

T

∑

γ 6=1

ϕγwαwαγ = 0.

Following (3.21), we see that up to a negligible error, we can replace the functions
in (3.56) by the corresponding functions of r. Explicitly,

wij → Sij ,∇w → ∇r.

By (3.50), we can also replace the volume element by that of the real space form
N .

In order to derive a contradiction to (3.50), we just need to prove that after the
replacement, there is an explicit gap between the LHS and the RHS of (3.56). To
prove this, it suffices to find a gap between the LHS and RHS of (2.1) if we do the
replacement:

(3.57) fαβ → Sαβ ,∇f → ∇r.

Using (3.19), we find the gap between the LHS and RHS in (2.1) is

(3.58)

1

2
〈∇r,∇

∑

γ 6=1

Sγγ〉 − (S11Sαα − |Sαβ |
2 +RedivY )

= −
m− 1

2
(coth r)′ −

1

2
coth r

2m− 1

2
coth r + (

1

2
coth r)2 + (m− 1)(coth r)2

= −
m− 1

2
((coth r)′ − (coth r)2)

=
m− 1

2
> 0.

This proves theorem 1 for Ric ≥ −(2m−1). The proof for other cases are similar.
We complete the proof of theorem 1.
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Proof of Theorem 2. We first prove theorem 2 assuming P is a pole, Ric ≥
−(2m− 1) and r > 5. Let n = 2m.

For notational convenience, in the proof of theorem 2, δ denotes small positive
constants depending only on ǫ, n. C denotes constants depending only on n. Moreover,
lim
ǫ→0

δ = 0. We use rij to denote the Hessian of the distance function on N .

Claim 4. 1− n ≤ ∆r ≤ 100(n− 1) for r > 1.

Proof. By the Laplacian comparison theorem,

∆r ≤ (n− 1) coth r ≤ 100(n− 1)

if r > 1. The Bochner formula gives

(3.59)
∂∆r

∂r
+

1

n− 1
(∆r)2 − n+ 1 ≤ 0.

If ∆r < 1 − n, then after a simple ODE analysis, ∆r will blow up when r is large.
This is a contradiction.

Choose an orthonormal frame hi (i = 1, 2, ..2m) near x ∈ M such that h1 = ∇r
and Jh2α−1 = h2α for 1 ≤ α ≤ m. Define a unitary frame eα(α = 1, ...m) so that
eα = 1√

2
(h2α−1 −

√
−1h2α) for all α.

Claim 5. Along the geodesic emanating from p, we have
r+1
∫

r

|rij |2 < C for any

r ≥ 1.

Proof. According to the Bochner formula,

(3.60)
∂∆r

∂r
+ |rij |2 − (n− 1) ≤ 0.

The result follows from claim 4 after we integrate (3.60) along the geodesic from
r to r + 1.

Now we argue by contradiction for theorem 2. Given any r0 > 5, assume the
average of the Laplacian satisfies

(3.61) −
∫

∂Bp(r0)

∆r ≥ ∆rN (r0)− ǫ

where ǫ is a small positive constant, then ∂Bp(r) can be decomposed into two parts,
namely,

(3.62)
E1 = {x ∈ ∂Bp(r0)|∆r ≥ ∆rN (r0)−

√
ǫ},

E2 = {x ∈ ∂Bp(r0)|∆r < ∆rN (r0)−
√
ǫ}.

For i = 1, 2, define the cone as follows:

(3.63) Fi = {θ ∈ UTp(M)|expp(r0θ) ∈ Ei}.

We also define

(3.64) Ei(r) = {x ∈M |x ∈ expp(rFi)}.



KÄHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND 85

Claim 6.

(3.65)
A(E1)

A(∂Bp(r0))
≥ 1− δ.

Proof. From (3.61), (3.62), we have
(3.66)

∆rN (r0)− ǫ ≤ −
∫

∂Bp(r0)

∆r

=

∫

E1
∆r

A(∂(Bp(r0)))
+

∫

E2
∆r

A(∂(Bp(r0)))

≤ A(E1)

A(∂(Bp(r0)))
∆rN (r0) + (1− A(E1)

A(∂(Bp(r0)))
)(∆rN (r0)−

√
ǫ}).

After a simple manipulation of (3.66), claim 6 follows.

Claim 7. If r0 − 2 ≤ r ≤ r0, then
A(E1r)

A(∂Bp(r))
≥ 1− δ.

Proof. Since we have two bounds for ∆r,

(3.67)

A(E1(r))

A(E1(r0))
≥ 1

C
,

A(E2(r))

A(E2(r0))
≤ C

for r0 − 2 ≤ r ≤ r0. Claim 7 follows from (3.65) and (3.67).

At the point q = expp(rθ), choose an orthonormal frame {d1, ...dn} near q such
that d1 = ∇r; Jd2α−1 = d2α for 1 ≤ α ≤ m. Define a unitary frame {eα}(α = 1, ...m)
so that eα = 1√

2
(d2α−1 −

√
−1d2α) for all α.

Claim 8. Along the geodesic from p satisfying θ ∈ F1,
r0
∫

r0−2

|rij − rij |2 ≤ δ.

Proof. We write the Bochner formula as

(3.68)
∂∆r

∂r
+

1

n− 1
(∆r)2 +

∑

i6=j

r2ij +
∑

i6=1

(
∆r

n− 1
− rii)

2 − n+ 1 ≤ 0.

According to (3.62), we have

(3.69) ∆r(r0, θ) ≥ ∆rN (r0)− δ

for θ ∈ F1. After a simple analysis of (3.59), it follows that

(3.70) |∆rN (r)−∆r(r, θ)| < δ

for r0 − 2 ≤ r ≤ r0. Integrating (3.68) along the geodesic from r0 − 2 to r0, in view
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of (3.70), we find that

(3.71)

r0
∫

r0−2

(
∑

i6=j

r2ij +
∑

i6=1

(
∆r

n− 1
− rii)

2)

≤
r0
∫

r0−2

(−∂∆r
∂r

+ n− 1− 1

n− 1
(∆r)2

= ∆r(r0 − 2, θ)−∆r(r0, θ) + 2(n− 1)− 1

n− 1

r0
∫

r0−2

(∆r)2

≤ δ.

Combining (3.70) and (3.71), claim 8 follows.

Applying (2.1) to the distance function to p, we find

(3.72)
1

2
〈∇r,∇(

∑

γ 6=1

rγγ)〉 = r11∆r − |rαβ |2 +Re(divY ).

where Y =
∑

γ 6=1

rαrαγeγ . It is simple to see

div|MY = div|∂Bp(r)Y.

Thus after the integration of (3.72) on the geodesic sphere ∂Bp(r), we find

(3.73)

∫

∂Bp(r)

∂
∑

α6=1

rαα

∂r
=

∫

∂Bp(r)

−2
∑

α,β

|rαβ |2 + 2rααr11.

For notational simplicity, we use
∫

to denote
∫

∂Bp(r)
, −
∫

to denote the average of
∫

∂Bp(r)
. Taking the average of (3.73) on ∂Bp(r), we get

(3.74)

∂−
∫

∑

α6=1

rαα

∂r
= −2−

∫

∑

α,β

|rαβ |2+2−
∫

r11∆r+2−
∫

∑

α6=1

rαα∆r−2−
∫

∑

α6=1

rαα−
∫

∆r.

Integrating (3.74) from r − 1 to r, we find

(3.75)

−
∫

∂Bp(r)

∑

α6=1

rααdA−−
∫

∂BP (r−1)

∑

α6=1

rααdA

=

r
∫

r−1

(−2−
∫

∑

α,β

|rαβ |2dAt + 2−
∫

r11∆rdAt

+ 2−
∫

∑

α6=1

rαα∆rdAt − 2−
∫

∑

α6=1

rααdAt−
∫

∆rdAt)dt.
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Integration of (3.75) from r0 − 1 to r0 yields

(3.76)

∫ r0

r0−1

−
∫

∂Bp(r)

∑

α6=1

rααdAdr −
∫ r0

r0−1

−
∫

∂Bp(r−1)

∑

α6=1

rααdAdr

=

∫ r0

r0−1

r
∫

r−1

(−2−
∫

∑

α,β

|rαβ |2dAt + 2−
∫

r11∆rdAt

+ 2−
∫

∑

α6=1

rαα∆rdAt − 2−
∫

∑

α6=1

rααdAt−
∫

∆rdAt)dtdr.

We come to the estimate of the first term in the LHS of (3.76).

(3.77)

∫ r0

r0−1

−
∫

∂Bp(r)

∑

α6=1

rααdAdr

=

∫ r0

r0−1

∫

E1(r)

∑

α6=1

(rαα − rαα)dA

A(∂Bp(r))
dr +

∫ r0

r0−1

∫

E2(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr

+

∫ r0

r0−1

∫

E1(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr.

Claim 9.

(3.78)

|
∫ r0

r0−1

∫

E1(r)

∑

α6=1

(rαα − rαα)dA

A(∂Bp(r))
dr| ≤ δ,

|
∫ r0

r0−1

∫

E2(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr| ≤ δ,

|
∫ r0

r0−1

∫

E1(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr −

∫ r0

r0−1

rααdr| ≤ δ.

Proof. By claim 4, for r0 − 2 ≤ r ≤ r0, we have the relation

(3.79)
1

C
≤ dA(∂Bp(r))(θ)

dA(∂Bp(r0))(θ)
≤ C

where dA(∂Bp(r))(θ) is the area element of ∂Bp(r). Therefore we get

(3.80)

∫ r0

r0−1

∫

E1(r)

∑

α6=1

(rαα − rαα)dA

A(∂Bp(r))dA
dr ≤

∫ r0

r0−1

∫

E1(r)

∑

α6=1

|rαα − rαα|dA

A(∂Bp(r))
dr

≤ C

∫ r0

r0−1

∫

E1(r)
|rαα − rαα|dA

A(∂Bp(r0))
dr

≤ C

∫

F1

∫ r0

r0−1 |rαα − rαα|drdAr0

A(∂Bp(r0))

≤ C

∫

F1(r)
(
∫ r0

r0−1

∑

α6=1

|rαα − rαα|2dr)
1
2 dAr0

A(∂Bp(r0))

≤ δ.
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In the last inequality, we have used claim 6 and claim 8. Similarly

(3.81)

∫ r0

r0−1

∫

E2(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr ≤

∫ r0

r0−1

∫

E2(r)

∑

α6=1

|rαα|dA

A(∂Bp(r))
dr

≤ C

∫ r0
r0−1

∫

E2(r)

∑

α6=1

|rαα|dA

A(∂Bp(r0))
dr

≤ C

∫

F2(r)

∫ r0

r0−1

∑

α6=1

|rαα|drdAr0

A(∂Bp(r0))

≤ C

∫

F2(r)
(
∫ r0

r0−1

∑

α6=1

|rαα|2dr)
1
2 dAr0

A(∂Bp(r0))

≤ δ.

(3.82)

|
∫ r0

r0−1

∫

E1(r)

∑

α6=1

rααdA

A(∂Bp(r))
dr −

∫ r0

r0−1

∑

α6=1

rααdr| =
∫ r0

r0−1

(1− A(E1(r))

A(∂Bp(r))
)
∑

α6=1

rααdr

≤ δ.

This completes the proof of claim 9.
Claim 9 says up to a negligible error, we can replace rαβ by rαβ in the first

term of (3.76) , where rαβ is the complexification of rij . Similarly, we can apply
the replacement to all other terms in (3.76) with a negligible error. In order to get
a contradiction to (3.61), we just need to prove that after the replacement, there is
an explicit gap between the LHS and the RHS of (3.76). It suffices to find a gap
between of LHS and RHS of (2.1) after the replacement fαβ → rαβ ,∇f → ∇r. The
computation of the gap is the same as (3.58).

We have thus proved theorem 2 when p is a pole, Ric ≥ −(2m− 1), r > 5. The
proof of the general case is similar.

4. Average Laplacian comparison for some special cases.

Proof of Theorem 3. For simplicity, we write rM (x) as r. Near a point q ∈ M ,
choose a unitary frame {eα} ∈ T 1,0(M) such that e1 = 1√

2
(∇r −

√
−1J∇r). Since

the metric is unitary invariant, it is simple to see rαβ = 0 if α 6= β; rαα = rββ if α 6= 1
and β 6= 1; rαβ = 0 unless α = β = 1; r11 = −r11.

Using r11 = ∆r − (m− 1)r22 and (2.2), we find

(4.1)
1

2
R11 +

∂∆r

∂r
+ (m− 1)|r22|2 + 2(∆r − (m− 1)r22)

2 = 0.

Applying (2.1) to r, after a simplification, we have

(4.2)
∂r22
∂r

= 2r22(∆r −mr22).

We use ∆r and rαβ to denote the Laplacian and complex Hessian of the distance
function in Mk. Let us write down the equations for Mk analogue to (4.1) and (4.2).
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Explicitly,

(4.3)
1

2
(m+ 1)k +

∂∆r

∂r
+ (m− 1)|r22|2 + 2(∆r − (m− 1)r22)

2 = 0,

(4.4)
∂r22
∂r

= 2r22(∆r −mr22).

We shall regard rαβ and rαβ as functions of r. (4.1), (4.3) give

(4.5)
(∆r −∆r)′ ≥ 1

2
(R11 − (m+ 1)k)− f(r)|∆r −∆r| − f(r)|r22 − r22|

≥ −f(r)|∆r −∆r| − f(r)|r22 − r22|.

Similarly (4.2), (4.4) give

(4.6) (r22 − r22)
′ ≥ −f(r)|∆r −∆r| − f(r)|r22 − r22|.

In (4.5) and (4.6), f(r) is a suitable positive function depending only on the
metric g of M . (4.5) and (4.6) yield

(4.7) (∆r −∆r + (r22 − r22))
′ ≥ −2f(r)(|∆r −∆r|+ |r22 − r22|).

We divide the proof of theorem 3 into two cases. Namely, k = −1 and k = 1.
Note that the case k = 0 is included in the real Laplacian comparison theorem.

First consider the case k = −1. It suffices to prove the claim below:

Claim 10. ∆r −∆r and r22 − r22 are always nonnegative.

Proof. First we prove the claim under the assumption as follows:

(4.8) ∆r < ∆r and r22 < r22 when r is small.

If the claim is not true, there are three possibilities.
1. When r is increasing, ∆r −∆r is becoming negative before r22 − r22 does.
2. r22 − r22 is becoming negative before ∆r −∆r does.
3. There exists a constant r0 > 0 such that r22|r=r0 = r22|r=r0 , ∆r|r=r0 =

∆r|r=r0 . ∆r < ∆r and r22 < r22 for r < r0.

For case 1, let r = r0 > 0 be the first radius such that ∆r − ∆r is becoming
negative while r22(r0)− r22(r0) > 0.

We are going to prove

(4.9) (∆r −∆r)′|r=r0 > 0.

(4.1) and (4.3) give

(4.10)
(∆r −∆r)′ ≥ 2(∆r − (m− 1)r22)

2 + (m− 1)r2
22

− (2(∆r − (m− 1)r22)
2 + (m− 1)r2

22
).

To prove (4.9), it suffices to prove

(4.11) 2(∆r − (m− 1)r22)
2 + (m− 1)r2

22
− 2(∆r − (m− 1)r22)

2 − (m− 1)r2
22
> 0.
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Since (∆r −∆r)|r=r0 = 0, after a simplification, (4.11) is equivalent to

(4.12) (r22 − r22)(4∆r − (2m− 1)(r22 + r22)) > 0.

According to the assumption in case 1, we have

(4.13) (r22 − r22)|r=r0 > 0.

Using k = −1 and the assumption in case 1, we find

(4.14) ∆r|r=r0 = ∆r|r=r0 >
2m− 1

2
r22|r=r0 .

Therefore

(4.15) (4∆r − (2m− 1)(r22 + r22))|r=r0 > 0.

Putting (4.13) and (4.15) together, we obtain the proof of (4.12) and (4.9). How-
ever, (4.9) contradicts the assumption that ∆r−∆r is becoming negative when r = r0.
Therefore case 1 can not happen.

Now consider case 2. Let r = r0 > 0 be the first radius such that r22 − r22 is
becoming negative while ∆r(r0)−∆r(r0) > 0.

Using (4.2), (4.4), r22|r=r0 = r22|r=r0 and r22 > 0, we find

(4.16) (r22 − r22)
′|r=r0 = (2r22(∆r −∆r))|r=r0 > 0

(4.16) contradicts the assumption that r22 − r22 is becoming negative at r = r0.
Therefore case 2 can not happen.

Consider case 3 now. Using the assumption that ∆r < ∆r and r22 < r22 for
r < r0, we integrate (4.7) from r0

2 to r0. It follows

(4.17) (∆r −∆r + r22 − r22)|r=r0 > 0.

This contradicts the assumption of case 3.

So far we have proved claim 10 under the condition (4.8). For general case, let
g̃ = (1 + ǫ)g where ǫ is a small positive constant. It is simple to check that g̃ satisfies
Ric(g̃) ≥ −(m+1)g̃. After a simple computation of the asymptotic expansion of ∆g̃r

and (rg̃)22 for small r, g̃ satisfies (4.8). The proof of claim 10 is complete if we let ǫ
approach 0.

The proof of the case k = −1 is complete.

Now we turn to the case k = 1.

Claim 11. For any r0 > 0, if

(4.18) r22 − r22 ≥ 0,∆r −∆r − (m− 1)(r22 − r22) ≥ 0

for any r ∈ (0, r0), there exists a function g(r) such that

(4.19) (∆r −∆r − (m− 1)(r22 − r22))
′ ≥ g(r)(∆r −∆r − (m− 1)(r22 − r22))
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for r ∈ (0, r0).

Proof.
By (4.1), (4.2), (4.3) and (4.4), we have

(4.20)
(∆r −∆r − (m− 1)(r22 − r22))

′

=
1

2
(R11 − (m+ 1)) + (m− 1)r222 + 2(∆r − (m− 1)r22)

2 − (m− 1)r222

− 2(∆r − (m− 1)r22)
2 + (m− 1)(2r22∆r − 2mr

2
22 − 2r22∆r + 2mr

2
22)

≥ (m− 1 + 2(m− 1)2 − 2m(m− 1))r222 + 2(∆r)2 + (−4(m− 1) + 2(m− 1))r22∆r

− ((m− 1 + 2(m− 1)2 − 2m(m− 1))r222 + 2(∆r)2 + (−4(m− 1) + 2(m− 1))r22∆r)

= −(m− 1)r222 + 2(∆r)2 − 2(m− 1)r22∆r − (−(m− 1)r222 + 2(∆r)2 − 2(m− 1)r22∆r)

= (m− 1)(r22 − r22)(r22 + r22)− 2(∆r −∆r)(∆r +∆r)

+ 2(m− 1)∆r(r22 − r22) + 2(m− 1)r22(∆r −∆r)

= (∆r −∆r)(2(m− 1)r22 − 2(∆r +∆r)) + (m− 1)(r22 − r22)(r22 + r22 + 2∆r).

Note that ∆r −∆r ≥ 0 when r < r0. To prove claim 11, by (4.19) and (4.20), it
suffices to find a function g(r) satisfying the two inequalities below:

(4.21) 2(m− 1)r22 − 2(∆r +∆r) ≥ g,

(4.22) (m− 1)(r22 + r22 + 2∆r) ≥ −(m− 1)g.

We take

(4.23) g = −2∆r − (r22 + r22),

then g satisfies (4.22). Plugging g in (4.21), after a slight simplification, it suffices to
prove

(4.24) 2(m− 1)r22 + r22 + r22 ≥ 2∆r.

Since k = 1, a simple computation gives

(4.25) ∆r <
2m− 1

2
r22.

Putting (4.18) and (4.25) together, we get

(4.26) ∆r − (m− 1)r22 ≤ ∆r − (m− 1)r22 ≤ r22
2
.

An observation of (4.2) gives

(4.27) r22 > 0.

(4.26) and (4.27) imply (4.24). The proof of claim 11 is complete.
Since ∆r = (m−1)r22+(∆r− (m−1)r22), to prove theorem 3 for the case k = 1,

it suffices to prove the claim as follows:

Claim 12. r22 − r22 ≥ 0, ∆r −∆r − (m− 1)(r22 − r22) ≥ 0 for all r.
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Proof. We first prove claim 12 under the assumption that r22 − r22 and ∆r −
∆r − (m− 1)(r22 − r22) are positive for small r. If claim 12 does not hold, there are
three possibilities.

1. When r is increasing, ∆r−∆r− (m−1)(r22−r22) is becoming negative before
r22 − r22 does.

2. r22 − r22 is becoming negative before ∆r −∆r − (m− 1)(r22 − r22) does.
3. There exists a constant r0 > 0 such that r22|r=r0 = r22|r=r0 , ∆r −∆r − (m−

1)(r22 − r22)|r=r0 = 0. ∆r−∆r− (m− 1)(r22 − r22) > 0 and r22 − r22 > 0 for r < r0.

For case 1, we apply claim 11. Let r = r0 > 0 be the first radius such that
∆r − ∆r − (m − 1)(r22 − r22) is becoming negative while r22(r0) − r22(r0) > 0.
Integrating (4.19) from r0

2 to r0, we find ∆r−∆r− (m− 1)(r22 − r22)|r=r0 > 0. This
contradicts the assumption of case 1.

For case 2 and case 3, we can get the same contradiction as in the proof of claim
10.

Thus we have completed the proof of claim 12 under the condition that r22 − r22
and ∆r −∆r − (m− 1)(r22 − r22) are positive for small r. To remove the condition,
we can use the same strategy as in the proof of claim 10.

This proves the case when k = 1. The proof of theorem 3 is complete.

Using −
∫

to denote the average on the geodesic sphere ∂Bp(r), we are going to
prove the following theorem:

Theorem 5. Let Mm be a complete Kähler manifold such that Ric ≥ −(m+1).
Consider a point p ∈M , define r to be the distance function to p on M . Near a point
q ∈ M , choose a unitary frame {eα} ∈ T 1,0(M) such that e1 = 1√

2
(∇r −

√
−1J∇r).

Let M
m

be the simply connected complex space form with constant bisectional curva-
ture −1. Use rαβ and ∆r to denote the complex hessian and Laplacian of the distance

function on M . If either ∆r or
∑

α6=1

rαα is a function of r, then inside the injective

radius of p, the following average Laplacian comparison holds,

(4.28) −
∫

∆r ≤ ∆r(r).

Proof. To prove theorem 5, it suffices to prove the following claim:

Claim 13.

(4.29) −
∫

∆r ≤ ∆r,−
∫

∑

α6=1

rαα ≤
∑

α6=1

rαα.

Proof. Let u(r) = −
∫

∆r, v(r) = −
∫

∑

α6=1

rαα. Integrating the Bochner formula (2.2)

on the geodesic sphere, we find

∫

∂Bp(r)

∂∆r

∂r
≤

∫

∂B(P,r)

−1

2
Ric11 − 2(∆r −

∑

α6=1

rαα)
2 −

∑

α6=1

r2αα.
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Taking the average on the geodesic sphere ∂Bp(r), we get
(4.30)
∂−
∫

∆r

∂r
≤ −1

2
−
∫

Ric11 + 2−
∫

(∆r)2 − 2(−
∫

∆r)2 − 2−
∫

(∆r −
∑

α6=1

rαα)
2 −

∑

α6=1

−
∫

|rαα|2.

If ∆r is a function of r, then (4.30) becomes

(4.31)
∂−
∫

∆r

∂r
≤ −1

2
−
∫

Ric11 − 2−
∫

(∆r −
∑

α6=1

rαα)
2 −

∑

α6=1

−
∫

|rαα|2.

After a slight simplification, we obtain

(4.32) u′ ≤ −1

2
(−
∫

R11)− 2u2 + 4uv − 2m− 1

m− 1
v2.

(3.74) becomes

(4.33)

∂−
∫

∑

α6=1

rαα

∂r
= −2−

∫

∑

α,β

|rαβ |2 + 2−
∫

r11∆r.

Further simplification gives

(4.34) v′ ≤ 2uv − 2m

m− 1
v2.

If
∑

α6=1

rαα is a function of r, then (4.30) becomes

(4.35)
∂−
∫

∆r

∂r
≤ −1

2
−
∫

Ric11 − 2(−
∫

∆r)2 − 2−
∫

|
∑

α6=1

rαα|2 −
∑

α6=1

−
∫

|rαα|2 + 4−
∫

(∆r
∑

α6=1

rαα)

where we expanded the term 2−
∫

(∆r − ∑

α6=1

rαα)
2 in (4.30). (4.35) is equivalent to

(4.32).

For (3.74), we write it as

(4.36)

∂−
∫

∑

α6=1

rαα

∂r
= −2−

∫

∑

α6=1,β 6=1

|rαβ |2 + 2−
∫

(∆r −
∑

α6=1

rαα)
∑

α6=1

rαα

which could be written as (4.34).

Combining (4.32), (4.34), the proof of claim 13 is almost the same as the proof
of claim 10, so we skip the proof here.

We complete the proof of theorem 5.

Remark 8. Note that in the proof of theorem 5, one just needs to assume −
∫

Ric11
to be bounded from below by a negative constant.
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5. An example. In this section, we give a simple example showing that when
the Ricci curvature is bounded from below by a positive constant, the diameter of the
Kähler manifold could exceed the diameter of the complex space forms. This implies
that in general situation, the sharp version of theorem 1 is not true comparing with
the complex space forms.

Let Nm = CP1 × · · · ×CP1 to be the Kähler manifold equipped with the product
metric, each CP1 has the Fubini-Study metric. We can rescale Nm so that Ric = g.
It is simple to see

diam(Nm) =
√
mπ.

After a rescaling, CPm inherits a Kähler-Einsten metric with Ric = g. Given a
unit vector X ∈ T (CPm), one can see that

RXJXJXX =
2

m+ 1
,

therefore

diam(CPm) =
π

√

2
m+1

.

If m > 1, one sees that

diam(Nm) > diam(CPm).

One can compare this example with the result of Li and Wang in [8]. Their
theorem says that for a complete Kähler manifold, if the bisectional curvature is
bounded from below by a positive constant, then CPm has the maximal diameter.
We also compare the example with the result in [10] by the author.

Theorem 6. Let Mm be a Kähler manifold with real analytic metric. Suppose
Ric ≥ K (K is any real number), then given a point p ∈ M , for sufficiently small
r > 0, the area of geodesic spheres satisfies A(∂Bp(r)) ≤ A(∂BNK

(r)), where NK

denotes the rescaled complex space form with Ric = K. The equality holds iff the M
is locally isometric to NK .

If we apply theorem 6 to the example, then for small r,

A(∂BNm(r)) ≤ A(∂BCPm(r)).

However, if r lies between diam(CPm) and diam(Nm), then the inequality does
not hold. It is not clear to the author whether the sharp version of theorem 1 is true
when the Ricci curvature is bounded from below by a negative constant. We can show
that along the diagonal of CP1×CP

1, the Laplacian of the distance function is greater
than that of CP2. However, the Laplacian of the distance function in CH1×CH1 along
the diagonal is smaller than that of CH2.

6. Gradient estimate.

Proof of Theorem 4. Let us recall the following theorem due to Yau [11]:

Theorem 7. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded from below by -(n-1). If f is a positive harmonic function on M , then

(6.1) |∇ log f | ≤ n− 1.
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Set n = 2m, h = log f . By direct computation, we find

(6.2) ∆h = −|∇h|2.

At a point p ∈ M such that ∇h 6= 0, choose an orthonormal frame {d1, ...dn}
near p such that d1 = ∇h

|∇h| ; Jd2α−1 = d2α for 1 ≤ α ≤ m. Define a unitary frame

{eα}(α = 1, ...m) so that eα = 1√
2
(d2α−1 −

√
−1d2α) for all α.

Using the Bochner formula, we compute

(6.3)

∆|∇h|2 = 2h2ij + 2Ric(∇h,∇h) + 2〈∇h,∇∆h〉

≥ 2
∑

i6=j

h2ij + 2h211 +
2(∆h− h11)

2

n− 1
+ 2

∑

i6=1

(
∆h− h11

n− 1
− hii)

2

− 2(n− 1)|∇h|2 − 2〈∇h,∇|∇h|2〉

= 2
∑

i6=j

h2ij + 2h211 + 2
∑

i6=1

(
∆h− h11

n− 1
− hii)

2

+
2

n− 1
(|∇h|4 + 2|∇h|2h11 + h211)− 2(n− 1)|∇h|2 − 2〈∇h,∇|∇h|2〉

= 2
∑

i6=j

h2ij +
2n

n− 1
h211 + 2

∑

i6=1

(
∆h− h11

n− 1
− hii)

2

+
2

n− 1
|∇h|4 − 2(n− 1)|∇h|2 − 2n− 4

n− 1
〈∇h,∇|∇h|2〉.

In the computation above, we have used the fact

(6.4) 〈∇h,∇|∇h|2〉 = hi(h
2
j)i = 2|∇h|2h11.

Now we define

(6.5)
u = 2

∑

i6=j

h2ij +
2n

n− 1
h211 + 2

∑

i6=1

(
∆h− h11

n− 1
− hii)

2 ≥ 0,

g = |∇h|2.

Theorem 7 says that

(6.6) 0 ≤ g ≤ (n− 1)2.

We may write (6.3) as

(6.7)

∆g ≥ u+
2

n− 1
g2 − 2(n− 1)g − 2n− 4

n− 1
〈∇h,∇g〉

= u+
2

n− 1
g(g − (n− 1)2)− 2n− 4

n− 1
〈∇h,∇g〉

≥ u+ 2(n− 1)(g − (n− 1)2)− 2n− 4

n− 1
〈∇h,∇g〉.

In the second inequality we have used (6.6). Define a new function

(6.8) w = (n− 1)2 − g,
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then

(6.9) 0 ≤ w ≤ (n− 1)2.

Moreover, w satisfies the inequality

−∆w ≥ u− 2(n− 1)w +
2n− 4

n− 1
〈∇h,∇w〉,

that is,

(6.10) ∆w +
2n− 4

n− 1
〈∇h,∇w〉 + u ≤ 2(n− 1)w.

Let us invoke a theorem in [6], page 76, which is proved by the standard Di
Georgi-Nash-Moser iteration:

Theorem 8. Let Mn be a complete Riemannian manifold with Ric ≥ k. Let p
be a point in M . If f is a nonnegative function on M satisfying the inequality

∆f ≤ Af

for some constant A ≥ 0, then there exist positive constants λ,C depending only on
r, A, k, n such that

(−
∫

Bp(r)

fλ)
1
λ ≤ C inf

Bp(
r
16

)
f.

We would like to apply theorem 8 to the function w in (6.10). The situation is
a little bit different: there is a first order term in (6.10). However, the coefficient of
the first order term in (6.10) is bounded, theorem 8 works for our case. Therefore we
have

(6.11) (−
∫

Bp(r)

wλ)
1
λ ≤ C inf

Bp(
r
16

)
w.

Define a cut-off function ϕ depending only on the distance to p, given by

(6.12) ϕ(r) =







1 0 ≤ r ≤ 1
2− r 1 < r < 2

0 r ≥ 2.

Multiplying (6.10) on both side by ϕ2w− 1
3 , after the integration, we get

∫

ϕ2w− 1
3∆w +

2n− 4

n− 1
〈∇h,∇w〉w− 1

3ϕ2 + uw− 1
3ϕ2 ≤ 2(n− 1)

∫

w
2
3ϕ2.

Integration by parts gives

(6.13)

2(n− 1)

∫

w
2
3ϕ2

≥
∫

uw− 1
3ϕ2 −

∫

〈∇(ϕ2w− 1
3 ),∇w〉+ 3(2n− 4)

n− 1

∫

〈∇h,∇w 1
3 〉w 1

3ϕ2

=

∫

uw− 1
3ϕ2 − 6

∫

ϕw
1
3 〈∇ϕ,∇w 1

3 〉+ 3

∫

ϕ2|∇w 1
3 |2

+
3(2n− 4)

n− 1

∫

〈∇h,∇w 1
3 〉w 1

3ϕ2.
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Using Schwartz inequality, we find

(6.14)

− 6

∫

ϕw
1
3 〈∇ϕ,∇w 1

3 〉 ≥ −δ
∫

ϕ2|∇w 1
3 |2 − 9

δ

∫

|∇ϕ|2w 2
3 ,

3(2n− 4)

n− 1

∫

〈∇h,∇w 1
3 〉w 1

3ϕ2 ≥ −δ
∫

ϕ2|∇w 1
3 |2 − C1

δ

∫

|∇h|2ϕ2w
2
3 .

where C1 is a constant depending only on n.
We take δ = 1. Noting that |∇h| ≤ n − 1, |∇ϕ| ≤ 2, we yield from (6.13) and

(6.14) that

(6.15)

C2

∫

Bp(2)

w
2
3 ≥

∫

Bp(1)

uw− 1
3

≥ (n− 1)−
2
3

∫

Bp(1)

u.

where C2 is a positive constant depending only on n. Using (6.9), (6.11), (6.15) and
the relative volume comparison theorem, we find

(6.16) −
∫

Bp(1)

u ≤ C3(w(p))
α

where C3, α are positive constants depending only on n. Following (6.5), (6.16), we
obtain

(6.17) −
∫

Bp(1)

2
∑

i6=j

h2ij +
2n

n− 1
h211 + 2

∑

i6=1

(
∆h− h11

n− 1
− hii)

2 ≤ C(n)(w(p))α.

(6.2), (6.8), (6.9), (6.11) imply

(6.18) −
∫

Bp(1)

(∆h+ (n− 1)2)2 ≤ C(n)(w(p))β .

where β is a positive constant depending only on n. (6.17) and (6.18) imply

(6.19) −
∫

Bp(1)

2
∑

i6=j

h2ij +
2n

n− 1
h211 + 2

∑

i6=1

(1 − n− hii)
2 ≤ C(n)(w(p))γ .

where γ = γ(n) > 0. Now we would like to use the Kähler structure of M . Applying
(2.1) to h, we find

(6.20)
1

2
〈∇h,∇(

∑

γ 6=1

hγγ)〉 = h11∆h− |hαβ |2 +Re(divY )

where Y =
∑

γ 6=1

hαhαγeγ .

Suppose at a point p ∈M ,

(6.21) |∇h(p)| > n− 1− ǫ

where ǫ is a very small constant. Then

(6.22) w(p) ≤ C(n)ǫ.
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Integrating (6.20) on the geodesic ball Bp(r), we get

(6.23)

−
∫

Bp(r)

∆h
∑

α6=1

(hαα + 2m− 1) +
1

2

∫

∂Bp(r)

∑

α6=1

(hαα + 2m− 1)〈∇h,∇r〉

=

∫

Bp(r)

h11∆h− |hαβ |2 +
1

2
Re

∫

∂Bp(r)

∑

α6=1

|∇h|h1α〈eα,∇r〉.

Define the annulus A = {x ∈M‖ 1
2 ≤ d(x, p) ≤ 1}. Integrating (6.23) with respect

to r from 1
2 to 1, dividing both side by V ol(Bp(1)), we find

(6.24)

−
1

∫

1
2

∫

Bp(r)
∆h

∑

α6=1

(hαα + 2m− 1)

V ol(Bp(1))
dr +

1

2

∫

A

∑

α6=1

(hαα + 2m− 1)〈∇h,∇r〉

V ol(Bp(1))

=

1
∫

1
2

∫

B(P,r) h11∆h− |hαβ |2

V ol(Bp(1))
dr +

1

2

Re
∫

A

∑

α6=1

|∇h|h1α〈eα,∇r〉

V ol(Bp(1))
.

In view of (6.19), after the complexification, we obtain

(6.25) −
∫

Bp(1)

∑

α6=β

|hαβ |2 + (h11 +
2m− 1

2
)2 +

∑

α6=1

(1− 2m− hαα)
2 ≤ C(n)ǫγ .

Following (6.25) and the relative volume comparison, we see that up to a negligible
error, we can replace the complex hessian of h in (6.24) by the corresponding constants
in (6.25). Explicitly,

(6.26) hαβ →







0 α 6= β

1− 2m α = β, α 6= 1
1−2m

2 α = β = 1
.

In order to get a contradiction to (6.21), it suffices to find a gap between the LHS
and the RHS of (6.24) if we replace hαβ by (6.26). Plugging (6.26) in (6.24), the LHS
is 0, the RHS is

(6.27)

(
1 − 2m

2
(
1− 2m

2
+ (m− 1)(1− 2m))− (

1− 2m

2
)2

− (m− 1)(1− 2m)2)

1
∫

1
2

V ol(B(P, r))

V ol(B(P, 1))
dr

= − (2m− 1)2(m− 1)

2

1
∫

1
2

V ol(B(P, r))

V ol(B(P, 1))
dr

≤ − (2m− 1)2(m− 1)

2
C(n)

where C(n) is a positive constant depending only on n.
The proof of theorem 4 is complete.
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