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KAHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND*

GANG LIUT

Abstract. On Ké&hler manifolds with Ricci curvature bounded from below, we establish some
theorems which are counterparts of some classical theorems in Riemannian geometry, for example,
Bishop-Gromov’s relative volume comparison, Bonnet-Meyers theorem, and Yau’s gradient estimate
for positive harmonic functions. The tool is a Bochner type formula reflecting the K&hler structure.
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1. Introduction. In this paper we study some geometric quantities on Kahler
manifolds when the Ricci curvature has a lower bound. Our point of view is from
Riemannian geometry. To distinguish from the Riemannian case, we derive a Bochner
type formula reflecting the Kéhler structure. One of the main results is the following:

THEOREM 1. Let M™ (m > 1) be a complete Kdhler manifold with Ric > (2m —
1)k(k # 0) and denote B, (r) to be the geodesic ball in M centered at x with radius r.
Let N be the 2m dimensional simply connected real space form with sectional curvature
k and denote By (r) to be the geodesic ball in N with radius r. For any point p € M
and constants 0 < ¢ < a < b, there exists a constant € = €(b,a,m,k) > 0 so that the
area of the geodesic spheres satisfies

A(0Bp(a)) — A(0Bn(a))
Furthermore, if k = —1, then € depends only on ¢,b — a,m.

REMARK 1. When the bisectional curvature is bounded from below, P. Li and
J. Wang [8] proved the sharp version of theorem 1 comparing with the complex space
forms . However, if we only assume the Ricci curvature has a positive lower bound,
one cannot expect a sharp estimate of theorem 1 comparing with the complex space
forms. The example will be given in section 5.

Theorem 1 has several corollaries:

COROLLARY 1. Using the same notation as in theorem 1, we have

Vol(By(b)) _ Vol(Bn()) . .
Vol(By(a)) = Vol(By(a)) (1—¢)

where € = e(b,a,m, k) > 0. If k = —1, ¢ depends only on b — a,c, m.

DEFINITION. Let (M™,g) be a complete Riemannian manifold. Choose a point
p € M, define the volume entropy of M to be h(M,g) = lim In Vol(B,(r))

r——+o00 r

B, (r) is the geodesic ball in M centered at p with radius .

where
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COROLLARY 2.  Let M™(m > 1) be a complete Kdhler manifold with Ric
—(2m — 1), then the volume entropy h(M) satisfies

Y%

h(M)<2m—1-—c¢
where € is a positive constant depending only on m.

COROLLARY 3.  Let M™(m > 1) be a complete Kdhler manifold with Ric >
(2m — 1), then the diameter d(M) satisfies

dM)<7m—e¢
where € is a positive constant depending only on m.

COROLLARY 4. Under the same assumption as in theorem 1, let \y be the first
eigenvalue of the Laplacian with Dirichlet boundary condition, then we have

AM(Bp(r)) < Mi(Bn(r)) — €

where € is a positive constant depending only on m, k and r.

REMARK 2. The corollaries above are counterparts of Bishop-Gromov volume
comparison theorem [1], Bonnet-Meyers theorem [3], Cheng’s spectrum estimate [4].

Given a stronger condition in theorem 1, we can obtain a better result. Explicitly,
we have the following:

THEOREM 2. Let M™ (m > 1) be a complete Kdhler manifold with Ric > (2m —
Dk, k # 0. Let N be the 2m dimensional simply connected real space form with
sectional curvature k . For a point p € M, denote rps(x) to be distance function from
p tox in M. Let ry be the distance function on N. If r < %" where iq is the injective
radius at p, then

1
(1.1) A0B,(1) /c?Bp(r) Ary < Arn(r) —e

where € is a positive constant depending only on m, k and r. In particular, if p is a
pole, then (1.1) holds for any r > 0. In this case, if r > ¢ > 0, then there exists a
constant § > 0 depending only on m,k,c such that e > § > 0.

When the metric is unitary invariant with respect to a point, we have the sharp
Laplacian comparison.

THEOREM 3. Let M™(m > 1) be a complete Kdhler manifold with Ric > (m+1)k
and suppose the metric is unitary invariant with respect to p in M. Let My be the
complex space form with holomorphic bisectional curvature k. Denote ra(x) to be
distance function from p to x in M. Let rpr, be the distance function on My. Then
for any x € M, y € My, with ray(x) = rar, (y),

Arp(z) < Arpg, (y).

REMARK 3. It is shown in [10] that in general, the sharp Laplacian comparison
does not hold comparing with the complex space forms.
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Finally, we have the counterpart of Yau’s gradient estimate [11] on K&hler mani-
folds:

THEOREM 4.  Let M™(m > 1) be a complete Kdhler manifold with Ric >
—(2m —1). If f is a positive harmonic function on M, then

(1.2) [Vleg f|<2m —1—c¢
where € is a positive constant depending only on m.

REMARK 4. Yau’s gradient estimate is sharp in the Riemannian case, see [9].

We have organized this paper into five parts apart from the introduction. Section
2 is devoted to establishing the Bochner type formula (2.1) we will need in the sequel.
We prove theorem 1 and its corollaries, as well as theorem 2 in section 3. In section 4,
we give the proof to theorem 3. We also prove a sharp average Laplacian comparison
theorem under a condition slightly weaker than theorem 3. An example is given in
section 5 to show that if the Ricci curvature has a positive lower bound, the sharp
version of theorem 1 does not hold comparing with complex space forms. We shall
compare the example with the result in [8] by Li and Wang, as well as the local results
n [10]. The proof of theorem 4 is given in the last section.

Here are some notations in this paper. We shall use Einstein summation in this
paper. For a smooth function f on a manifold M, Af denotes the standard Beltrami
Laplacian if we use orthonormal frame; if we use unitary frame, then Af = faEg p
which is one half of the Beltrami Laplacian. For p € M, B,(r) denotes the geodesic
ball in M centered at p with radius . Vol denotes the volume and A denotes the
area. Given a compact set K € M, fK f is the average of the integral of f over K.

Acknowledgment. The author would like to express his deep gratitude to his
advisor, Professor Jiaping Wang for constant help and many valuable discussions
during the work. He also thanks Professor Peter Li for his interest in this work.

2. A Bochner type formula for functions on Kahler manifolds.

PROPOSITION 1. Let M™ (m > 1) be a complete Kihler manifold, m = dimg(M).
Let f € C*°(M) and assume that V f(p) # 0 where p € M. Choosing a unitary frame
eo € THO(M)(aw = 1,2,..m) near p so that e; = %(X —V—1JX) where X = %,
we have

(2.1) Vf, O £7)) = F1AF = |f.51 + Re(divY)
y#1

where Y = > fafayey, Af =3 faa-
7#1 o
Proof. Recall the Bochner formula:
1 .
(22)  SAVIP) = fapl® +1fu5l" + (Af)afa + (Af)afa + Ric,gfafs.
(2.2) can be decomposed into two parts, namely,

(2.3) (fafag)s = 1fapl* + (Af)afa,

(2.4) (fafaz)s = fasl® + (Af)afa + Ric,5fafs-
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Define a vector field
Z = fafare1,
then (2.3) becomes
(2.5) divY +divZ = |f,5° + (Af)afa-

Now we compute
(2.6)
Re(divZ) = Re(D> (Ve,(fafater)s 5) + (Ve, (fafazer)s e1)
B#1

=Re(D_ fo1(Ve, (faer) e5) + fo1(Ve, (fxer), e1) + e1(fo1)(faer, 7))
B#1

= fi1Af + 5 <Vf, (fi1))-

Plugging (2.6) in (2.5), we find

—_

SIVEVQ fm)) = fisAf = |fo51° + Re(divY).
v#1

l\D

This completes the proof of proposition 1. O

REMARK 5. Note that in (2.1), it is assumed that Vf # 0 at p. In some
applications, we will multiply (2.1) on both side by cut-off functions and do integration
by parts. We can justify the integration by approximation of Morse functions, no
matter whether V f is vanishing somewhere.

3. Relative volume comparison. In this section we are going to prove theorem
1 and its corollaries, together with theorem 2. First we shall prove the corollaries in
the introduction assuming theorem 1.

Proof of Corollary 1. Suppose for sufficiently small €,
Vol(By(5)) _ Vol(Bw(b)

(3.1) Vol(By(a)) = Vol(Br(a) -~
We have
Vol(Byb) _ Vol(By(52)  AD(B, () / ADB,0))
Vol(By(a))  Vol(Bp(a)) Vol(By(a)) . Al0(By )
(3.2) =
_ Vol(Bx () | A@(B,(52) / A@BN()
VolBr(@) T Vel(B) | Ao ()"

Putting (3.2), (3.1) together, after some manipulation, we find

A@(B,(52)) _ AOBx()
Vol(B,(@) = Vol(Bx(a)

(3.3) (1—d1).



KAHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND 73

Also note that

Vol(By(a)) _ _A(0(Bp(a) [ Al8(By(r))) .
A(By(%51)))  AQ(Bp(*4))) J A(O(By(a))
(3.4) °
s _AOBp(a) [ AOBN(T)))
T AO(By(%1))) ) AO(Bn(a))

Combining (3.3), (3.4) together, we get

A@D(B,(5)) _ AD(By(452)
A@(By(@) ~ A@Bx (@)

(3.5) (1 8).

In (3.3), (3.5), 01,02 are positive constants depending only on ¢, a,b, m, k. Moreover,
1in(1)51- =0fori=1,2. If k= —1, §; depends only on €,b — a,c, m.
€E—>

If € is sufficiently small, (3.5) contradicts theorem 1. O

Proof of Corollary 2. Let N be the 2m dimensional real space form with constant

sectional curvature —1. Taking a; = i,b; = ¢ + 1 in corollary 1 for i = 1,2, ...., we
have

Vol(B,(t + 1 Vol(By(i+ 1
(3.6) O( P(z+ )) S (1_61) O( N(l"’ ))

Vol(B,(i)) Vol(Bn(i))

According to corollary 1, there exists a positive constant § such that ¢; > § for all
i > 1. Therefore (3.6) becomes

Vol(B,(i + 1)) Vol(By(i +1))

(37) VB, =) TValBym)
By iteration of (3.7), it follows that
Vol(By(i)) i—1 Vol(Bn (i)
. voltB,m) = " VelBx )
Thus
anolEBp(i)) < i —z 1 In(1— 8) + anol(iBN(i))
(3.9) N InVol(By(1)) Vol(Bn(1))

When i — oo, the RHS of (3.9) is approaching 2m — 1+1n(1 —¢). This completes
the proof of corollary 2. O

Proof of Corollary 3. Let S?™ be the 2m dimensional sphere with constant sec-
tional curvature 1. Assuming d(M) = d, we pick two points p,q € M such that
dist(p,q) = d(M). According to corollary 1, there exists a positive constant e such
that

Vol(By()) _ Vol(Bgan ()
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Vol(By(§)) _ Vol(Bsznm(3))
Vol(B,(d)) = Vol(Bsam(d)) T
Therefore
| > Vol(By(5)) + Vol(Bqy(3))
2 Vol(M)
(3.10) d
> 901 )VOZ(BS2M(§))
Vol (Bgem (d))

If d is sufficiently close to 7, the right hand side of (3.10) is greater than 1. This
is a contradiction. O

REMARK 6. The counterexample in section 5 shows that when Ric > 2m — 1,
the diameter of the Kdhler manifold could exceed that of CP™. The corollary says the
diameter of the Kdhler manifold can not be too close to that of S*™.

Proof of Corollary 4. We use the same notation as in theorem 1. Denote the area
of the geodesic sphere 0B,(r) by A(r), the volume of the geodesic ball B, (r) by V(r).
Denote A1 (Bn(r)) by A1 and let f be the nonnegative eigenfunction to the equation

Af =-Mf

on By (r) with Dirichlet boundary condition. After normalization, we may assume
fBN(T) f? = 1. It is easy to see that f is a radical function. Pulling f back to the
tangent space of p, via the exponential map, we may assume that f is defined on

By(r).
Suppose there is small constant € such that

Al(BP(T)) 2 )‘1 -6

then we have the inequality

 IVFI?
(3.11) A —e€< ‘]]9”()72
I,
Using integration by parts, we find
oALf +Af)f
(3.12) Jown . <e
I, f
By Cheng’s argument in [4],
M+HAF>0

in By(r). It is simple to see that f is strictly between two positive constants in B, ().
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By (3.12), we have

pr(%)()\lf+Af) < pr(%)f()\lf'i‘Af)
V(3) - V(5)
S5y PGS +Af)

- V(z)

(3.13) I, I

IN

Therefore, we conclude

(3.14) ]{3(13,%)()\1‘)0 +Af) < C(r,k,m)e
= 6(67 T, ka m)

Noting that f is a function of r and f’ < 0, we have

L JE @At
]{3(13,5))\1][_)\1 } V(3)

(3.15) B r 3 V()
SRR O
> ()

where

C) = M)+ 0 [ r) D

75

In the last inequality of (3.15), we have applied the Bishop-Gromov volume compari-

son. Using the divergence theorem, we have

_ T VAG)
(3.16) ]{B(Rg) Af=f (2)‘,(9
Combining (3.14), (3.15), (3.16), we obtain
A(z) _ Cr) =6 _ ABN(3) <
10 Ve © I V()

where 4,6 are small constants depending on €, m, k,r.
If € is very small, ¢ is small. (3.17) contradicts theorem 1. O

Proof of Theorem 1. We consider the case Ric > —(2m — 1) first.
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Let n = 2m. For € M, define r(z) = d(x,p). Choose an orthonormal frame h;
(i =1,2,..2m) near x so that hy = Vr and Jhoq—1 = hay for 1 < a < m. Define a
unitary frame {e,} so that e, = %(hga,l — v/—1hay). Let w® be the dual 1-form of
h;. Define a tensor S near x such that

S = Sijwi ® wj
(3.18) = cothrZwi ®w'.
i#1
It is simple to see that the tensor S is independent of the frame h;, moreover, S

is the Hessian of the distance function in real space form with sectional curvature —1.
After the complexification, we find

0 a#p
(3.19) S.5= cothr a=8a#1
%cothr a=0=1.

We introduce the proposition as follows:

PROPOSITION 2. Let M™ be a complete Riemannian manifold such that Ric >
—(n—=1), p € M be a point. Define N to be the n dimensional real space form with
constant sectional curvature —1. Given constants b > a > c > 0, € > 0, if the area of
the geodesic spheres satisfies

A(9By(b))
A(9By(a))

| AOBy ()

(3.20) A(@By(a) ©

there exists positive constants §, C and a smooth function w defined in the annulus
T={x¢€ M|3“T+2b <d(z,p) < %T"‘%} so that

][ (|Vw — Vr|* + Z lwij — Si;|?) < 6(b—a,c,n,e),
(3.21) T i

[Vw| < C(b—a,c,n).
Moreover,

lim §(b — a,n,c,e) = 0.

e—0

REMARK 7. Proposition 2 originates from Cheeger and Colding’s paper [2]. Their
estimate depends on both the upper bound and lower bound of a and b which is not
sufficient to prove corollary 2.

Proof. For notational convenience, in the proof of proposition 2, § denotes small
positive constants depending only on €,¢,b — a,n. C' denotes positive constants de-
pending only on ¢, b — a,n. Moreover, 1111(1J 6 =0.

€E—>

Define A,V to be the Laplacian and the covariant derivatives in N. Pick a point
P in N, define

A(a,b) ={z € M|a < d(z,p) < b},
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A(a,b) = {y € Nla < d(y,p) < b}.
We solve the equation
(3.22) Ag=0
in Z_(a,b) satisfying the boundary condition g(z) = 2 on 9B(p,a), g(z) = 1 on
OB(P,b). Then g is a radical function, say, § = ¢(r). Pulling g back to the tangent
space of p, via the exponential map, we may assume that g is defined in A(a,b). It

is simple to check that g is strictly decreasing with respect to r, therefore g~ exists.
Moreover,

(3.23) .17 ", 1@ ) 1@ " < C.
Similarly we solve the equation
(3.24) Ag=0

in A(a,b) satisfying the same boundary condition as g.

CramM 1.
| A(0By(a))  A(9Bp(a)) <o
(3.25) Vol(A(a,b))  Vol(A(a,b)) ’
' | A(0By(b))  A(9Bg(b)) <o
Vol(A(a,b))  Vol(A(a,b))

Proof. Claim 1 follows from (3.20) and Bishop-Gromov volume comparison. O
The following claim is due to J. Cheeger and T. Colding [2]:

CLAIM 2.

(3.26) f‘ Vg — Vg|* < 6.
A(a,b)

Proof. By maximum principle, |¢g —g| < 2 in A(a,b). By Laplacian comparison
and (3.22), we have Ag > 0, since 7 is decreasing with respect to r. Using integration
by parts, we have

]l Vg — Vg = —]l (9-9)Ag—7)
A(a,b) A(a,b)

< 2][ Ag
A(a,b)

faA(a,b)%ds
~  Vol(A(a,b))
o=t A(aBp(b) / A((?Bp(a))
=20 Oy @) ~ 7 o)
<.

In the last inequality, we have applied claim 1. O
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The claim below comes from P. Li and R. Schoen in [7] and J. Cheeger and T.
Colding [2]:

Cram 3. For Dirichlet boundary condition on A(a,b), the first eigenvalue Ay >

C.
Proof. Given a constant u > 0, define f = (b+1—7)" in A(a,b). Then
Af =p(p—1Db+1—=r)F2 —pub+1—r""tAr,
IVfl=pb+1-r)"
Taking u large, from the Laplacian comparison theorem, we may assume that
AfzLIVf<C
in A(a,b).

For any function h € C°(A(a, b)),

/ h? < / R2Af
A(a,b) A(a,b)

- —2/ h(V f,Vh)
A(a,b)

<20 / 1|V
(a

)

< 20(/ h2>%</ VAPt
A(a,b) A(a,b)

Therefore A\ > ﬁ. This proves claim 3. O

Combining claim 2 and claim 3, one concludes that

(3.27) ]l 932 <.
A(a,b)

Let a; = 2%t q, = 30420 3y, — 20830 ) — addb g5 g < qy <ap < by < by <b.

Since g is a positive harmonic function in A(a,b), by the gradient estimate of Cheng
and Yau [5], we have

(3.28) Vgl < Cg <2C

in A(aq,b1). By a simple calculation, one can find a function ¥(r) so that

Vo) =SB0,
Ya) =1,/ (@) =1

in A(a,b). It is easy to see v is strictly increasing with respect to r, therefore 1)1
exists. Moreover,

(3.29) [l 1L 1L 1@ L 1@ L ™)™ < C
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For z € A, 4, define

(3.30) u(@) =y og ' og(x),u(x) =vog ' og(e) =y(r(x)),
then by (3.23), (3.28), (3.29),

(3.31) Vul < C

in A(al,bl).

The Bochner formula for u(x) is
1
§A|Vu|2 = |V2u|? + (Vu, VAu) + Ric(Vu, Vu).
Since Ric > —(n — 1), we can rewrite it as
1 2 1 2 2 L2
(3.32) §A|Vu| —(VAu, Vu) — E(Au) + (n—1)(Vu, Vu) > |Vu — ﬁAu| .

Now we want to get the estimate of the Hessian of u.

We will multiply both side of (3.32) by a cut-off function and do integration by
parts.

In [2], Cheeger and Colding choose the cut-off function to be a function of g. To
make that work, the upper bound of a is needed. To avoid this problem, we define
the cut-off function @ to be a function of r, explicitly,

0 a<r<m

e ST <a
(3.33) o(r) = 1 as<r<bs
bbll:l; bo <7 < by
0 by <r<hb.
Define
(3.34) p(z) =Fog 'og
in A(a,b). From claim 2, (3.23), (3.27), (3.28), it is easy to see that
(3.35) f Ve Vel+le-wP <o
A(a,b)
Multiplying (3.32) on both side by %* and using integration by parts, we find
1 1
S — SV, VIVul) + B2 (Au)? + 25Au(VE, Vu
o) sy ~3 (T VIVH) 4 B0+ 2580(V, V)
(336)

— LF(B)? + (0~ PV IV~ Al

)
>
~ Vol(A(a1,b1)) Ja(arm)
Let us write the first term of (3.36) as

(V@*, VIVul?)

N =

)
Vol(A(a1,b1)) A(ai,b1)

(3.37)

= _2][ PP Ui
A(al,bl)
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We will estimate the two terms in the RHS of (3.37) separately. Using (3.31),
(3.35), we find

- 2]1 2@ — pi)ujuil
A(a1,b1)

< 2]1 1Y% — Vel |Vl sl
A(al,bl)

<cC BV — V|| V2ul
A(al,bl)

(3.38)
< c(f Ve - wmf(][ 2Vl
A(al,bl) A(alxbl)

< 6<][ 22Vl
A(al,bl)

<=(0+96 72| V2ul?).

A(ai,b1)

N =

In (3.38) we may assume that e is so small that § < % For the other term on the
RHS of (3.37), integration by parts gives

- ][ Ppiujug; = —][ Ppi(u3);
A(al,bl) A(al,bl)
(3.39) Z][ Pipius +][ Ppiiu;
A(al,bl) A(al,bl)
—f (e RV + ATl
A(a1,b1)
Plugging (3.38) and (3.39) in (3.37), we find that
1 1
f (TR VANV + PAGIVA + 38+ 37Tl + P
A(al,bl) 2 2
1
(3.40) 4+ 2PAu(VE, Vu) — —F*(Au)* + (n — " |Vul*}

1
2]1 72| V2u — —Aul?.
A(al,bl) n

We can rewrite (3.40) as
_ 2, — 2 1 o 2, =2 2
{(Ve, V) [Vul” + DAp|Vul” + 56 + —2"(Au)” + 7 (Au)
A(ay,b1) 2 2n

1
+ 25Au(VE, Vu) — ﬁ?(m)? + (n — 1)@%|Vul?}
6 ][ —2 2 1 2
>(1-= ?°|Vu — —Au
(3.41) 1-3) o) | A

0 VOZ(A(GQ, bg))

1
> (1 - 2y A2, 02)) V2u — —Au 2
= 2)VOZ(A(CL1;b1>>]{1(a2,b2)| " |

1
>C |V2u — —Aul?.
A(az,b2) n
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We claim that up to a negligible error, we can replace all functions on the LHS
of (3.41) by the corresponding radical functions, namely,

Ve — Vi,
Vu — V7,
Ap — (@og )|V,
Au— o571 |Vl
To justify the above substitution we use the following standard lemma:

LEMMA. Let ki, ..., kn, k1, .., kx be functions on a measure space U such that for
all 7,

Sup(|ks| + |ki]) < C,
/ ki — ki| <e,
U

/ |]€1--'1€N—E1-"EN| SNCNile.
U

then

Proof. If we write

kl"'kN—El"'kN:(kl—El)]@"'kN

+ k1 ki(kigr — kis1)kigo - - kn

+ k1 kno1(kn — k),
then the conclusion is obvious.

It is simply to see that the area of the geodesic sphere in A(a, b) satisfies a pinching
estimate:

A(@BN (b)) _ A(9By(b))

y A@Bx (1)
A(@B(a) = A(9B,(a))

(3.42) A(0Bx(a)

— 4.

>

Therefore, after the replacement of functions, the LHS of (3.41) is very small.
Thus we have

1
(3.43) ]l |V2u — —Aul* < 6.
A(a27b2) n
Since Ag = 0, it follows from (3.23), (3.27), (3.28), (3.29), (3.30) and claim 2 that

(3.44) ][ Au— (Fog™ V)|V <o,
A(ay,b1)
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Also note
(Wog 1)'|Vg]* = Au

and

. 1

V'u = —Au,

n
therefore
(3.45) ][ V20 — V2 < 6.
A(ag,bg)
Let us define

(3.46) w=19 tou=gloy,

Putting claim 2, (3.27), (3.29), (3.31), and (3.45) together, we find

(347) ][ Z |w1‘j — Sij|2 S 5
A(

¢121b2) i,

where we have used the fact that S is the pull back of the Hessian of the distance
function from N.
It follows from (3.29) and (3.31) that

(3.48) V| < C.

in A(al, bl)
Putting (3.23) and claim 2 together, we find

(3.49) ][ |Vw — Vr|? <6.
A(al,bl)

Combining (3.47), (3.48) and (3.49), we complete the proof of proposition 2. O
Now we are ready to prove theorem 1. If there exists a small constant € > 0 such
that
A(9Bp(b))
A(0Bp(a))

A(0Bn (b))

(3.50) (0B (a)) (1—e),

>
according to proposition 2, there exists a smooth function w in T = A(&ZTJ“%, Q“TJ“%)
such that (3.21) holds. For simplicity, we write a3 = &’T"’%, b = %T"’%, ar =

%,bg = ‘“Jg—%l(note that our notation is a little bit different from proposition
2).

Applying (2.1) to w, we find
1 9 .
(3.51) 5V, VO wys)) = (wgAw — [w,z/* + Re(divY)) =0
v#1

where Y = )" wgwaye,. Let o(r) to be the Lipschitz cut-off function in the annulus
7#1
T depending only on the distance to p, given by
s a1 <r<a
(3.52) o(r) = 1 ax <r<by

bi—r
bll—bg bg <r< bl.
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Multiplying ¢ on both sides of (3.51), we integrate in the annulus T and take the
average. It follows that

1 .
(3.53) 5][ o(Vw, V(Z Wyy)) —][ {pw 7 Aw — |wa3|2 + pRe(divY)} = 0.
T 7#1 T
Using integration by parts, we find

(3.54) %]ZT P(Vw, V(Y wyy)) = —]{F AW Y Wy — %]ZTZWMV@U,V@%

7#1 7#1 7#1

£ ptwigdw—lwggP)+ eRe(diny) = f olwsaw = o)

(3.55)
— Re][ Z Py WEWos-

Tyz1

Note that in (3.54) and (3.55), Aw is one half of the real Laplacian of w.

Therefore
1
(3.56) T 7#1 Ty
_][Tgp(wﬁAw - |wa5|2) + Re]ZT Z Py WrWaz = 0.

v#1

Following (3.21), we see that up to a negligible error, we can replace the functions
in (3.56) by the corresponding functions of r. Explicitly,

Wij —» Sij,Vw — Vr.

By (3.50), we can also replace the volume element by that of the real space form
N.

In order to derive a contradiction to (3.50), we just need to prove that after the
replacement, there is an explicit gap between the LHS and the RHS of (3.56). To
prove this, it suffices to find a gap between the LHS and RHS of (2.1) if we do the
replacement:

(357) fOéE — SO&E’ Vf — Vr.
Using (3.19), we find the gap between the LHS and RHS in (2.1) is

(Vr,V Y Sy5) = (Sy1Sam — [S,5]° + RedivY)
y#1

N =

= —mQ_ . (cothr) — % COth’rzm cothr 4 (% cothr)? + (m — 1)(cothr)?

(3.58)

m—1 ’ 2
=-— ((cothr)” — (cothr)?)

= > 0.

This proves theorem 1 for Ric > —(2m —1). The proof for other cases are similar.
We complete the proof of theorem 1. O
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Proof of Theorem 2. We first prove theorem 2 assuming P is a pole, Ric >
—(2m —1) and r > 5. Let n = 2m.

For notational convenience, in the proof of theorem 2, § denotes small positive
constants depending only on €, n. C denotes constants depending only on n. Moreover,

1in(1J 0 = 0. We use 7;; to denote the Hessian of the distance function on N.
e—

Cramm 4. 1—-n<Ar <100(n—1) forr > 1.
Proof. By the Laplacian comparison theorem,
Ar < (n—1)cothr <100(n —1)
if » > 1. The Bochner formula gives

8Ar+ 1
or n—1

(3.59) (Ar)> —n+1<0.

If Ar < 1 —n, then after a simple ODE analysis, Ar will blow up when 7 is large.
This is a contradiction. O

Choose an orthonormal frame h; (i = 1,2,..2m) near & € M such that hy = Vr
and Jhoo—1 = hoy for 1 < o < m. Define a unitary frame e,(a = 1,...m) so that

€a = %(f@afl — V—1hg,) for all a.

r+1
CLAIM 5. Along the geodesic emanating from p, we have [ |rij|* < C for any
kA
r>1.

Proof. According to the Bochner formula,

OAr
(3.60) 5+ [rij|> — (n — 1) <0.

The result follows from claim 4 after we integrate (3.60) along the geodesic from
rtor+1.0

Now we argue by contradiction for theorem 2. Given any ry > 5, assume the
average of the Laplacian satisfies

(3.61) ][ Ar > Ary(rg) — €
9Byp(ro)

where € is a small positive constant, then 0B,(r) can be decomposed into two parts,
namely,

E1 = {x € 0B,(ro)|Ar > Arn(ro) — Ve},

(3.62) By = {x € OB, (ro)|Ar < Ary(ro) — VeL.

For i = 1, 2, define the cone as follows:
(3.63) F, ={0 e UT,(M)|exp,(rob) € E;}.
We also define

(3.64) Ei(r) ={z € M|z € exp,(rF;)}.
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CLAIM 6.
A(En)
(3.65) T oy 210
Proof. From (3.61), (3.62), we have
(3.66)
Ary(rg) —e < ]éBP(TO) Ar
_ fEl Ar N sz Ar
A(0(Bp(ro))) ~ A(O(Bp(r0)))
_AE) __ABY) ) oz

After a simple manipulation of (3.66), claim 6 follows. O

CLam 7. Ifrg—2 <7 <, thenA’(%(BL;(T)))zl—é.

Proof. Since we have two bounds for Ar,

Y

A(E(r) _ 1
(3.67) )

A(El(TQ)) 67
(Ea(r))
E2 ¢

IN

A(Ex3(ro))
for ro — 2 <r <rg. Claim 7 follows from (3.65) and (3.67). O

At the point ¢ = exp,(rf), choose an orthonormal frame {d;,...d,} near g such
that dy = Vr; Jdag—1 = dag for 1 < a < m. Define a unitary frame {e,}(a =1,...m)
so that e, = %(dga_l —v/—1dzq) for all a.

7o
CLAM 8. Along the geodesic from p satisfying 0 € Fy, [ |rij —Tij[* < 4.
—2

To

Proof. We write the Bochner formula as

OAr 1 9 9 Ar 9
. i) — <0.
(3.68) 5 +n— (Ar) +ZT”+Z(TL—1 ri)°—n+1<0
i#£] i#1
According to (3.62), we have
(3.69) Ar(ro,0) = Ary(ro) — 6

for 6 € Fy. After a simple analysis of (3.59), it follows that
(3.70) |Ary(r) — Ar(r,0)| < ¢

for rg — 2 < r < rg. Integrating (3.68) along the geodesic from rg — 2 to r¢, in view
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of (3.70), we find that

o

oo i i£1
T oar
A R Yo%
(3.71) 4( or —1(&7)
Ar(ro —2,6) — Ar(ro,6) +2(n— 1)~ —— [ (ary
’I"[)72
<s.

Combining (3.70) and (3.71), claim 8 follows. O
Applying (2.1) to the distance function to p, we find

(Vr, V(Z Ty5)) = rgAr — |TaB|2 + Re(divY).
7#1

N =

(3.72)
where Y = 3 rarage,. It is simple to see
y#1
diU|MY = di’l)|aBp(T)Y.
Thus after the integration of (3.72) on the geodesic sphere 0B, (r), we find

627”&5

a#l 2
(3.73) / — = / -2 7. 5" + 2raary-
oB,(r)  Or 0B, (r) az[; g

For notational simplicity, we use [ to denote [, () f to denote the average of
faBp(r)' Taking the average of (3.73) on 0B, (r), we get

of 3 roa
(3.74) % ][Z 7512 +2]1r11m+2][zrmm— ][ZT(M][ Ar.

a#l a#l

Integrating (3.74) from r — 1 to r, we find

Z ’I”aadA —][ Z TaadA

][(;B (r) atl OBp(r—1) a#l

(3.75) _ / ]ZZ o5 l2dA; + 2][ rrArdA;
+ 2][ Z TocozATdAt - ]Z Z 'I"aadA ][ATdAt

a#l a#l



KAHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND

Integration of (3.75) from ro — 1 to 7o yields

/ ]l TaadAdT— / ][ raadAdr
ro—1J 0By (r) 751 ro—1J0By(r—1)

a;ﬁl

(3.76) / / ]lZ|r 5|2dAt+2][r11ArdAt
To— 1

+ 2]Z Z TagArdA; — ][Z TagdAy ][ArdAt )dtdr.

a#l a#l
We come to the estimate of the first term in the LHS of (3.76).

[0}

/ ]Z TaadAd’l’
ro—1J0Bp(r) a;ﬁl
fEl ) 7&1(7"0@ ; Faa)dA ) sz (r) 275:1 TaadA
3.77) :/ - dr —|—/ L -
ro—1 A(@BP(T)) ro—1 A(aBp(’r‘))

/ Bi(r) 2 TaadA
+/ 071 dr.
ro—1  A(0Bp(r))

CLAIM 9.

’l"aa — Taa)dA

fEl(T)
|/ R <4

I} S (r Z ToagdA
(3.78) |/ o Xl R« S—

fEl(r) Z TO‘O‘dA 0
dr —/ Tomdr| < 0.
. —xomw G

Proof. By claim 4, for rg — 2 < r < 1y, we have the relation
1 dA(0B,(r))(0)
3.79 B Qi St ASEVAST NG
(3.79) C = dA@B,(r)®)

where dA(9B,(r))(0) is the area element of 0B,(r). Therefore we get

fEl(r) > (raw — Faa)dA v fEl(r) S |Taw — TaaldA
/ a#l dT</ a#l dr
ro—1 A(aB;D(T))dA - ro—1 A(aBp(T))
< C«frofl Ei(r) |TO‘E _Faa|dA ,
A(OBy(ro))
(3.80) fm [0 [ram — FazldrdAy,
A(0By(r0))
fF1(’r‘) f’l‘o 1 Z |TOtOz Fo¢a|2d'f')%d,(4,,‘0
<C
A(&Bp( 0))
<.
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In the last inequality, we have used claim 6 and claim 8. Similarly
fEQ ) a%;l TaadA sz (7‘) |Taa |dA

o il M - e
fro 1fE2(r Z |70 |d A
N T X TR
(3.81) ng(r) f,:)o_l > |raaldrdAy,
<C a#l
- A(0By(r0))
ng(r) fro 1 Z |To‘o‘|2dr)2dAT0

A(aBp( 0))

IN

C

IN

d.

(3.82)
fEl(r 3 FamdA

|/ a#l dT—/
T‘ T‘()l

This completes the proof of claim 9. O

Claim 9 says up to a negligible error, we can replace ToB by T,p in the first
term of (3.76) , where T,5 is the complexification of 7;;. Similarly, we can apply
the replacement to all other terms in (3.76) with a negligible error. In order to get
a contradiction to (3.61), we just need to prove that after the replacement, there is
an explicit gap between the LHS and the RHS of (3.76). It suffices to find a gap
between of LHS and RHS of (2.1) after the replacement faE = To5 Vf — Vr. The
computation of the gap is the same as (3.58).

We have thus proved theorem 2 when p is a pole, Ric > —(2m — 1), r > 5. The
proof of the general case is similar. 0

CABC) s
2 Tear] = [0 A@B, ) 2
<.

4. Average Laplacian comparison for some special cases.

Proof of Theorem 3. For simplicity, we write rps(x) as r. Near a point ¢ € M,
choose a unitary frame {e,} € T1%(M) such that e; = \%(VT —/=1JVr). Since
the metric is unitary invariant, it is simple to see r 7 = 0 if # B Tag = 55 ifa#1
and B # 1; 7 =0 unless a = 8 =1; rip = —171.

Using 7 = Ar — (m — 1)ry5 and (2.2), we find

1 OAr
Tt

(4.1) >

+ (m — 1)|ryg]® 4+ 2(Ar — (m — 1)ry)* = 0.

Applying (2.1) to r, after a simplification, we have

8 ’I”2§

(4.2) =2

= 2ry5(Ar — mryg).

We use Ar and 7,5 to denote the Laplacian and complex Hessian of the distance
function in My. Let us write down the equations for Mj, analogue to (4.1) and (4.2).
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Explicitly,
1 oA _
(4.3) §(m + Dk + 8—: + (m = 1)[Fyz)? + 2(Ar — (m — 1)7y5)% = 0,
OT o3 e _
(4.4) 672? = 275 (Ar — mTy3).

We shall regard 7z and 75 as functions of r. (4.1), (4.3) give

(Ar = Ar)' = S(Ryg — (m+ 1)k) = f(r)[Ar — Ar| = f(r)[Tyz — 193
> —f(r)[Ar — Ar| = f(r)[Fyz — -

N~

(4.5)

Similarly (4.2), (4.4) give
(4.6) (Toz = 193)" = = f(r)|[Ar — Ar| = f(r)[Fsz — ra3]-

In (4.5) and (4.6), f(r) is a suitable positive function depending only on the
metric g of M. (4.5) and (4.6) yield

(4.7) (Ar — Ar + (T — 193))" = =2 (r)([Ar — Ar| + [Tyq — ra)).

We divide the proof of theorem 3 into two cases. Namely, kK = —1 and k£ = 1.
Note that the case k£ = 0 is included in the real Laplacian comparison theorem.
First consider the case k = —1. It suffices to prove the claim below:

CLAIM 10. Ar — Ar and Tyz — 195 are always nonnegative.

Proof. First we prove the claim under the assumption as follows:
(4.8) Ar < Ar and ry3 < To3 when 7 is small.

If the claim is not true, there are three possibilities.

1. When r is increasing, Ar — Ar is becoming negative before To5 — 755 does.

2. Ty5 — Ty3 is becoming negative before Ar — Ar does.

3. There exists a constant rg > 0 such that Toglrmry = Toglrmrgs, AT|rer, =
Arly—py. Ar < Ar and ry5 < Toz for r < 7.

For case 1, let 7 = ry > 0 be the first radius such that Ar — Ar is becoming
negative while T5(r0) — rog(ro) > 0.
We are going to prove

(4.9) (Ar — Ar)'|,—, > 0.
(4.1) and (4.3) give

(4.10) Grea % ?(AT — (m = 1)ryz)* + (m — 1)7"35

2(Ar — (m — 1)T55)% + (m — 1)72,).
To prove (4.9), it suffices to prove

(4.11) 2(Ar — (m = 1)ryz)® + (m — 1)r2; = 2(Ar — (m — 1)Ta3)® — (m — 1)755 > 0.



90 G. LIU
Since (Ar — Ar)|,=., = 0, after a simplification, (4.11) is equivalent to
(4.12) (Tog — T93) (4ATr — (2m — 1)(ry5 + To3)) > 0.

According to the assumption in case 1, we have

(4.13) (Toz = T93)lr=r > 0.
Using k£ = —1 and the assumption in case 1, we find
—_ 2m —1_
(4.14) Ar|pery = AT|pep, > Tr§2|7«:m.
Therefore
(4.15) (4Ar — (2m — 1)(ry5 + To3)) |r=r, > 0.

Putting (4.13) and (4.15) together, we obtain the proof of (4.12) and (4.9). How-
ever, (4.9) contradicts the assumption that Ar— Ar is becoming negative when r = ry.
Therefore case 1 can not happen.

Now consider case 2. Let 7 = 7y > 0 be the first radius such that To3 — ryz is
becoming negative while Ar(rg) — Ar(rg) > 0.
Using (4.2), (4.4), To3lr=ro = Tog|r=r, and Fy3 > 0, we find

(4.16) (F2§ - T2§)/|T:To = (2F2§(KT —Ar))|r=r, >0

(4.16) contradicts the assumption that o5 — ro5 is becoming negative at r = rg.
Therefore case 2 can not happen.

Consider case 3 now. Using the assumption that Ar < Ar and ryz < To3 for
r < T, we integrate (4.7) from % to ro. It follows

(4.17) (Ar — Ar + Foz — To5)|rery > 0.
This contradicts the assumption of case 3.

So far we have proved claim 10 under the condition (4.8). For general case, let
g = (14 €)g where € is a small positive constant. It is simple to check that g satisfies
Ric(g) > —(m+1)g. After a simple computation of the asymptotic expansion of Agr
and (rg)5 for small r, § satisfies (4.8). The proof of claim 10 is complete if we let €
approach 0. O

The proof of the case k = —1 is complete.

Now we turn to the case k = 1.

Cram 11. For any ro > 0, if
(4.18) Tog — Toz > 0,Ar — Ar — (m — 1)(Fyz — 795) > 0
for any r € (0,70), there exists a function g(r) such that

(419)  (Ar —Ar — (m = 1)(Tyg — r93)) = g(r)(Ar — Ar — (m — 1)(Fy5 — r43))
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forr e (0,79).

Proof.
By (4.1), (4.2), (4.3) and (4.4), we have
(4.20)

(Ar — Ar = (m = 1)(Ty3 — r53))’
= S(Bup = (m o+ 1))+ (m = kg + 2(Ar = (m — Drg)® — (m — 17
—2(Ar — (m — 1)Ty3)° + (m — 1)(2ry5Ar — 2mray — 2T 5 Ar + 2mTay)
> (m—142(m—1)> =2m(m — 1))r2z + 2(Ar)*> + (=4(m — 1) + 2(m — 1))ry5 A7
—((m =142(m —1)* = 2m(m — 1))7az + 2(Ar)> + (—4(m — 1) 4 2(m — 1))7,54A7)
= —(m — 1)rag + 2(Ar)* = 2(m — 1)rggAr — (—(m — 1)Tag + 2(Ar)* — 2(m — 1)T5A7)
= (m = 1)(Tyz — r93) (Toz + 73) — 2(Ar — Ar)(Ar + Ar)
+2(m = )Ar(Tyz — 195) + 2(m — 1)ry5(Ar — Ar)
= (Ar — Ar)(2(m — Dryz — 2(Ar + Ar)) + (m — 1)(Tyz — 73) (Faz + 75 + 287).

Note that Ar — Ar > 0 when 7 < ro. To prove claim 11, by (4.19) and (4.20), it
suffices to find a function g(r) satisfying the two inequalities below:

(4.21) 2(m — 1)ry5 — 2(Ar + Ar) > g,

(4.22) (m —1)(Tyz + ro3 + 2A7) > —(m — 1)g.
We take

(1.23) 9= 3Br — (g + ),

then g satisfies (4.22). Plugging ¢ in (4.21), after a slight simplification, it suffices to
prove

(424) 2(m - 1)7”2§ + 725 + T3 Z 2AT.
Since k = 1, a simple computation gives

— 2m —1
(4.25) Ar < m2 Tos.

Putting (4.18) and (4.25) together, we get

(4.26) Ar = (m = ryy < Br — (m — g < 2.
An observation of (4.2) gives
(427) Tog > 0.

(4.26) and (4.27) imply (4.24). The proof of claim 11 is complete. O
Since Ar = (m—1)rys5 + (Ar— (m—1)ry3), to prove theorem 3 for the case k = 1,
it suffices to prove the claim as follows:

CLAIM 12, To5 — 193 > 0, Ar — Ar — (m — 1)(Fyz — 195) > 0 for all r.
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Proof. We first prove claim 12 under the assumption that 7,5 — ry3 and Ar —
Ar — (m — 1)(Fyg — rog) are positive for small r. If claim 12 does not hold, there are
three possibilities.

1. When r is increasing, Ar — Ar — (m — 1) (T3 — ry3) is becoming negative before
Ty5 — Iy does.

2. Ty3 — o3 is becoming negative before Ar — Ar — (m — 1)(Tyz — ry3) does.

3. There exists a constant 7o > 0 such that To5|r—ry = T95|r=ry, A7 — Ar — (m —
1)(Toz — T93) lr=ro = 0. Ar — Ar — (m —1)(Fyg — r935) > 0 and To5 — 1755 > 0 for r < 7g.

For case 1, we apply claim 11. Let r = 7y > 0 be the first radius such that
Ar — Ar — (m — 1)(Fyz — 793) is becoming negative while To5(rg) — 795(r0) > 0.
Integrating (4.19) from 2 to ro, we find Ar — Ar — (m — 1)(Fy5 — 7'93)|r=r, > 0. This
contradicts the assumption of case 1.

For case 2 and case 3, we can get the same contradiction as in the proof of claim
10.

Thus we have completed the proof of claim 12 under the condition that Ty — 795
and Ar — Ar — (m — 1)(To3 — r95) are positive for small r. To remove the condition,
we can use the same strategy as in the proof of claim 10. O

This proves the case when & = 1. The proof of theorem 3 is complete. O
Using f to denote the average on the geodesic sphere dB,(r), we are going to
prove the following theorem:

THEOREM 5. Let M™ be a complete Kdahler manifold such that Ric > —(m+1).
Consider a point p € M, define r to be the distance function top on M. Near a point
q € M, choose a unitary frame {e,} € TVO(M) such that e; = %(VT‘ —/—1JVr).

Let M be the simply connected complex space form with constant bisectional curva-
ture —1. Use ToB and Ar to denote the complex hessian and Laplacian of the distance

function on M. If either Ar or Y. rum is a function of r, then inside the injective
a#l
radius of p, the following average Laplacian comparison holds,

(4.28) ]ZAT < Ar(r).

Proof. To prove theorem 5, it suffices to prove the following claim:

CrLAM 13.

(4.29) ][Ar < Zr,][ > rew <Y Toa

Proof. Let u(r) = f Ar,v(r) = f 3 row. Integrating the Bochner formula (2.2)
a#l

on the geodesic sphere, we find

OAr / 1.
< —=Ric;7 —2(Ar — row)’ — rio.
/asp(r) or oB(Pr) 2 0; o;
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Taking the average on the geodesic sphere 9B, (r), we get
(4.30)

04 Ar 1
J‘(;r <——%chll+2]Z(Ar —2]ZA’I“ —2][(AT— Tow)? Z]Z|T°‘a|2

a#l a#l

If Ar is a function of r, then (4.30) becomes

o+ Ar 1 .
(431) J;r < —g]l RZCIT — ]Z(AT’ — Taa Z][ |Ta0c|2

a#l a#l

After a slight simplification, we obtain

27, —
m 11)2
m—1

1
(4.32) u < —5(][ R7) — 2u® + 4uv —

(3.74) becomes

F 3 ram
(4:33) - ]l > sl +2f rigar,

Further simplification gives

(4.34) v < 2uv —
m

If Y ram is a function of r, then (4.30) becomes

a#l
(4.35)
of A
JC " ][chu ][Ar —2][|Zr(m|2 Z][|raa|2+4 Aanm

a#l a#l a#l

where we expanded the term 2f(Ar — Y roz)? in (4.30). (4.35) is equivalent to
a#l

(4.32).

For (3.74), we write it as
aJC Z Taa
a;él
(436) - 5. - = ][ Z |Taﬁ|2 + 2][(AT - Z Taa) Z Taw
a#l1,8#1 a#l a#l

which could be written as (4.34).
Combining (4.32), (4.34), the proof of claim 13 is almost the same as the proof
of claim 10, so we skip the proof here. O

We complete the proof of theorem 5. O

REMARK 8. Note that in the proof of theorem 5, one just needs to assume f Ricq1
to be bounded from below by a negative constant.
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5. An example. In this section, we give a simple example showing that when
the Ricci curvature is bounded from below by a positive constant, the diameter of the
Kahler manifold could exceed the diameter of the complex space forms. This implies
that in general situation, the sharp version of theorem 1 is not true comparing with
the complex space forms.

Let N™ = CP! x --- x CP! to be the Kéhler manifold equipped with the product
metric, each CP' has the Fubini-Study metric. We can rescale N™ so that Ric = g.
It is simple to see

diam(N™) = /m.

After a rescaling, CP™ inherits a Kéhler-Einsten metric with Ric = g. Given a
unit vector X € T(CP™), one can see that

2
R =
XIXIXX =
therefore
diam(CP™) = S
2
m—+1

If m > 1, one sees that
diam(N™) > diam(CP™).

One can compare this example with the result of Li and Wang in [8]. Their
theorem says that for a complete Kahler manifold, if the bisectional curvature is
bounded from below by a positive constant, then CP™ has the maximal diameter.
We also compare the example with the result in [10] by the author.

THEOREM 6. Let M™ be a Kdihler manifold with real analytic metric. Suppose
Ric > K (K is any real number), then given a point p € M, for sufficiently small
r > 0, the area of geodesic spheres satisfies A(OBy(r)) < A(OBny(r)), where Ng
denotes the rescaled complex space form with Ric = K. The equality holds iff the M
is locally isometric to N .

If we apply theorem 6 to the example, then for small r,
A(OBnm (1)) < A(OBcpm (r)).

However, if r lies between diam(CP™) and diam(N™), then the inequality does
not hold. It is not clear to the author whether the sharp version of theorem 1 is true
when the Ricci curvature is bounded from below by a negative constant. We can show
that along the diagonal of CP! x CP!, the Laplacian of the distance function is greater
than that of CP2. However, the Laplacian of the distance function in CH' x CH! along
the diagonal is smaller than that of CH?Z.

6. Gradient estimate.
Proof of Theorem 4. Let us recall the following theorem due to Yau [11]:

THEOREM 7. Let M™ be a complete Riemannian manifold with Ricci curvature
bounded from below by -(n-1). If f is a positive harmonic function on M, then

(6.1) [Vieg f| <n-—1.



KAHLER MANIFOLDS WITH RICCI CURVATURE LOWER BOUND 95

Set n = 2m, h =log f. By direct computation, we find
(6.2) Ah = —|Vh|?.

At a point p € M such that Vh # 0, choose an orthonormal frame {dy,...d, }
near p such that d; = ‘g—Z‘; Jdoa_1 = doy for 1 < o < m. Define a unitary frame

{ea}(a=1,...m) so that e, = %(dga_l —v/—1dzq) for all a.
Using the Bochner formula, we compute

A|Vh|* = 2R3, + 2Ric(Vh, Vh) + 2(Vh, VAR)

2(Ah — hi1)? Ah—h
> 2 ( 11 11 5 52
2 W2+ T e 2 (S = ha)
i#£] i#1
—2(n —1)|Vh|* = 2(Vh,V|Vh[?)
Ah—h
=2 b+ 205 +2) (= — hii)’
(6.3) Y iz T
2
+ m(|Vh|‘l +2|VA*hiy + hiy) = 2(n = 1)|VA[* = 2(Vh, V|VA[?)
Ah—h
2 2 Ah—hn 2
ZQZhij h11+2z - hii)
i#j i#1
2 2
+ m|Vh|4 —on—1)|VA) - T <Vh V|Vh[3).
In the computation above, we have used the fact
(6.4) (Vh,VIVh[?) = hi(h3); = 2|Vh[*hq;.
Now we define
Ah —h
UZQthj h%1+2z 11— ii)2207
(6.5) i#j i#1
g =|Vh|*.
Theorem 7 says that
(6.6) 0<g<(n—1)>
We may write (6.3) as
2 2n —4
> = - - -
Ag_u—i—n_lg 2(n—1)g n_1<Vh,Vg)
2 2n—4
(6.7) =t ———glg— (n— 1)) — ——=(Vh, Vg)
9y 2n—
>u+2(n—1)(g—(n—1)%) — — <Vth)

In the second inequality we have used (6.6). Define a new function

(6.8) w=(n-1)7-g
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then
(6.9) 0<w< (n—1)>2

Moreover, w satisfies the inequality

2n —4
—Aw>u—2(n— 1w+ :_ 1 (Vh, Vw),
that is,
2n —4
(6.10) Aw + — (Vh,Vw) +u < 2(n — 1)w.

Let us invoke a theorem in [6], page 76, which is proved by the standard Di
Georgi-Nash-Moser iteration:

THEOREM 8. Let M™ be a complete Riemannian manifold with Ric > k. Let p
be a point in M. If f is a nonnegative function on M satisfying the inequality

Af <Af

for some constant A > 0, then there exist positive constants A, C depending only on
r, A, k,n such that

We would like to apply theorem 8 to the function w in (6.10). The situation is
a little bit different: there is a first order term in (6.10). However, the coefficient of
the first order term in (6.10) is bounded, theorem 8 works for our case. Therefore we
have

(6.11) (][ wM> < C inf w.
By (r) Bp({5)
Define a cut-off function ¢ depending only on the distance to p, given by
1 0<r<i1
(6.12) pry=¢ 2—r 1<r<2
0 r>2.

Multiplying (6.10) on both side by 2w~ 3, after the integration, we get

2n —4
/wa*%Aer _
n—1

(Vh, Vw>w7%<p2 Fuw 5o < 2(n—1) /w%<p2.

Integration by parts gives

2(n — 1)/w%g02

> [uwrtg = [(wietud), va) + 222
n—

z/uw_%ch—6/gow%<Vg0,Vw%)+3/<p2|Vw%|2
3(2n—4
L 3@n—4)

n—1

8(2n —4) /(Vh, Vo yub

(6.13)

/(Vh,Vw%ﬁu%wQ.
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Using Schwartz inequality, we find
—G/sﬁw%W% Vws) > —5/¢2|Vw%|2— %/valz’w%,
M/wh, Vwd)wh o? > —5/¢2|Vw%|2— %/whmﬁw%.

where C is a constant depending only on n.
We take 6 = 1. Noting that |Vh| < n —1,|Vy| < 2, we yield from (6.13) and

(6.14) that
Cg/ w3 2/ uw~
By (2) Bp(1)

> (n— 1)7% / u.
Bp(1)

where Cy is a positive constant depending only on n. Using (6.9), (6.11), (6.15) and
the relative volume comparison theorem, we find

(6.14)

n—1

Wl

(6.15)

(6.16) ]lB S Cslwlp)”

where Cj5, a are positive constants depending only on n. Following (6.5), (6.16), we
obtain

2 2n 2 Ah — hll 2 o
(6.17) ][Bp(l) 2;: hig + —hii +2 ;(ﬁ — hii)* < C(n)(w(p))”.
(6.2), (6.8), (6.9), (6.11) imply
(6.13) £ G- 17 < Cwi)’.

B,(1)

where f is a positive constant depending only on n. (6.17) and (6.18) imply
2
(6.19) ][ 23 hi+ = 242 > (1 =n—hii)? < Cn)(w(p)).
Bp(1) iz n—1 i71

where 7 = y(n) > 0. Now we would like to use the K&hler structure of M. Applying
(2.1) to h, we find

1
(6.20) 5(Vh, V(> hys)) = hysAh — |h5|* + Re(divY)

v#1

where Y = > hghoze,.

y#1
Suppose at a point p € M,

(6.21) [Vh(p)| >n—1—c¢
where € is a very small constant. Then

(6.22) w(p) < C(n)e.
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Integrating (6.20) on the geodesic ball B,(r), we get

1
- Ah Y (hag+2m—1)+ = / (how + 2m — 1)(Vh, Vr)
/Bpm ;1 2 JoB,(r) ;

:/ hyiAh = |h,g5° + Re/ > |Vhlhiz(ea, V7).
By(r) 0By (r) a#l

(6.23)

Define the annulus A = {z € M||3 < d(z,p) < 1}. Integrating (6.23) with respect
to r from 3 to 1, dividing both side by Vol(B,(1)), we find

L [y AR 3 (hag +2m — 1) fA (haa + 2m — 1)(Vh, V7)
_/ a#l dT+— a#l
Vol(B,(1)) 2 Vol(B,(1))
6.24)  °
Jp(pry TR — |h 52 1 Be [ azl IVhiha(ea, V)
/ VolB,1) 32 Vol(B,(1))

In view of (6.19), after the complexification, we obtain

1
(6.25) h =|? + (h —|— 24 1—2m — hoz)? < C(n)eY
£, ) 20 Tl Ghar 4 20 4 3 ? < Cn)

oc;éﬁ a#l

Following (6.25) and the relative volume comparison, we see that up to a negligible
error, we can replace the complex hessian of h in (6.24) by the corresponding constants
n (6.25). Explicitly,

0 a#p
(6.26) hog—=q 1-2m a=pa#1.
1—22m O[:ﬁzl

In order to get a contradiction to (6.21), it suffices to find a gap between the LHS
and the RHS of (6.24) if we replace h,5 by (6.26). Plugging (6.26) in (6.24), the LHS
is 0, the RHS is

(1 —22m(1 —22m +(m—1)(1 - 2m)) — (1 —22m)2
—(m—1)(1—2m)? / Z; ﬁ dr
(6.27) : L
_ (2m- 1)2 Vol(B(P,
B / Vol(B(P dr
(2m —1)%(m _1)0(71)

- 2
where C'(n) is a positive constant depending only on n.
The proof of theorem 4 is complete. O
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