Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Height fluctuations of stationary TASEP on a ring in relaxation time scale

Zhipeng Liu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider the totally asymmetric simple exclusion process on a ring with stationary initial conditions. The crossover between KPZ dynamics and equilibrium dynamics occurs when time is proportional to the $3/2$ power of the ring size. We obtain the limit of the height function along the direction of the characteristic line in this time scale. The two-point covariance function in this scale is also discussed.


Nous considérons le processus d’exclusion simple totalement asymétrique sur un anneau, avec condition initiale stationnaire. La transition entre la dynamique KPZ et la dynamique d’équilibre a lieu lorsque le temps est proportionnel à la puissance $3/2$ de la taille de l’anneau. Nous obtenons la limite de la fonction de hauteur le long de la droite caractéristique dans cette échelle de temps. Nous étudions également la fonction de covariance à deux points dans cette même échelle.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 2 (2018), 1031-1057.

Received: 14 October 2016
Revised: 1 March 2017
Accepted: 17 March 2017
First available in Project Euclid: 25 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

TASEP on a ring Stationary initial condition Relaxation time scale


Liu, Zhipeng. Height fluctuations of stationary TASEP on a ring in relaxation time scale. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 2, 1031--1057. doi:10.1214/17-AIHP831.

Export citation


  • [1] J. Baik, G. B. Arous and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (5) (2005) 1643–1697.
  • [2] J. Baik, P. L. Ferrari and S. Péché. Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63 (8) (2010) 1017–1070.
  • [3] J. Baik, P. L. Ferrari and S. Péché. Convergence of the two-point function of the stationary TASEP. In Singular Phenomena and Scaling in Mathematical Models 91–110. Springer, Cham, 2014.
  • [4] J. Baik and Z. Liu. Fluctuations of TASEP on a ring in relaxation time scale, 2016. Available at arXiv:1605.07102.
  • [5] J. Baik and Z. Liu. Tasep on a ring in sub-relaxation time scale. J. Stat. Phys. 165 (6) (2016) 1051–1085.
  • [6] J. Baik and E. M. Rains. Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100 (3–4) (2000) 523–541.
  • [7] R. Basu, V. Sidoravicius and A. Sly. Last passage percolation with a defect line and the solution of the slow bond problem, 2014. Available at arXiv:1408.3464.
  • [8] B. Derrida and J. L. Lebowitz. Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80 (2) (1998) 209–213.
  • [9] P. L. Ferrari and H. Spohn. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265 (1) (2006) 1–44.
  • [10] L.-H. Gwa and H. Spohn. Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68 (6) (1992) 725–728.
  • [11] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2) (2000) 437–476.
  • [12] P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball. Ballistic deposition on surfaces. Phys. Rev. A 34 (1986) 5091–5103.
  • [13] M. Prähofer and H. Spohn. Current fluctuations for the totally asymmetric simple exclusion process. In In and Out of Equilibrium (Mambucaba, 2000) 185–204. Progr. Probab. 51. Birkhäuser Boston, Boston, MA, 2002.
  • [14] S. Prolhac. Finite-time fluctuations for the totally asymmetric exclusion process. Phys. Rev. Lett. 116, 090601 (2016).