Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Level lines of the Gaussian free field with general boundary data

Ellen Powell and Hao Wu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the level lines of a Gaussian free field in a planar domain with general boundary data $F$. We show that the level lines exist as continuous curves under the assumption that $F$ is regulated (i.e., admits finite left and right limits at every point), and satisfies certain inequalities. Moreover, these level lines are a.s. determined by the field. This allows us to define and study a generalization of the $\operatorname{SLE}_{4}(\underline{\rho})$ process, now with a continuum of force points. A crucial ingredient is a monotonicity property in terms of the boundary data which strengthens a result of Miller and Sheffield and is also of independent interest.

Résumé

Nous étudions les lignes de niveau d’un champ libre Gaussien dans un domaine $D$ du plan, avec condition au bord générale donnée par une fonction $F$. Nous montrons que ces lignes existent comme courbes continues sous l’hypothèse que $F$ est une fonction réglée (i.e., $F$ admet une limite à droite et à gauche en tous points) et satisfait certaines inégalités. De plus, ces lignes de niveau sont presque sûrement determinées par le champ. Cela nous permet de définir et d’étudier une généralisation des courbes $\operatorname{SLE}_{4}(\underline{\rho})$ avec un continuum de points marqués. Un ingrédient essentiel de la preuve est une propriété de monotonicité en termes de la condition au bord, d’un intérêt indépendant, qui améliore un théorème de Miller et Sheffield.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 4 (2017), 2229-2259.

Dates
Received: 29 September 2015
Revised: 22 August 2016
Accepted: 22 August 2016
First available in Project Euclid: 27 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1511773744

Digital Object Identifier
doi:10.1214/16-AIHP789

Mathematical Reviews number (MathSciNet)
MR3729653

Zentralblatt MATH identifier
06847080

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Gaussian free field Level lines Schramm Loewner evolution

Citation

Powell, Ellen; Wu, Hao. Level lines of the Gaussian free field with general boundary data. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 4, 2229--2259. doi:10.1214/16-AIHP789. https://projecteuclid.org/euclid.aihp/1511773744


Export citation

References

  • [1] L. V. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book, New York-Düsseldorf-Johannesburg, 1973.
  • [2] J. Dieudonné. Foundations of Modern Analysis. Pure nd Applied Mathematics 10-I. Academic Press, New York-London. Enlarged and corrected printing. 1969.
  • [3] J. Dubédat. SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 (4) (2009) 995–1054.
  • [4] G. B. Folland. Real Analysis: Modern Techniques and Their Applications, 2nd edition. A Wiley-Interscience Publication. Wiley, New York. 1999.
  • [5] A. Kemppainen and S. Smirnov. Random curves, scaling limits and Loewner evolutions. Ann. Probab. To appear, 2016.
  • [6] K. Kytölä and K. Izyurov. Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Related Fields 155 (1–2) (2013) 35–69.
  • [7] J. Miller and S. Sheffield. Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields 164 (3–4) (2016) 553–705.
  • [8] J. Miller and S. Sheffield. Imaginary geometry II: Reversibility of $\operatorname{SLE} _{\kappa}(\rho_{1};\rho_{2})$ for $\kappa\in(0,4)$. Ann. Probab. 44 (3) (2016) 1647–1722.
  • [9] J. Miller and S. Sheffield. Imaginary geometry III: Reversibility of SLE$_{\kappa}$ for $\kappa$ in $(4,8)$. Ann. of Math. 184 (2) (2016) 455–486.
  • [10] J. Miller and H. Wu. Intersections of SLE paths: The double and cut point dimension of SLE. Probab. Theory Related Fields (2016).
  • [11] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. (2) 161 (2) (2005) 883–924.
  • [12] O. Schramm and S. Sheffield. Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 (1) (2009) 21–137.
  • [13] O. Schramm and S. Sheffield. A contour line of the continuum Gaussian free field. Probab. Theory Related Fields 157 (1–2) (2013) 47–80.
  • [14] M. Wang and H. Wu. Level lines of Gaussian free field I: Zero-boundary GFF. Stochastic Process. Appl. (2016).
  • [15] W. Werner and H. Wu. From CLE($\kappa$) to SLE($\kappa$, $\rho$)’s. Electron. J. Probab. 18 (36) (2013) 1–20.
  • [16] D. Zhan. Duality of chordal SLE. Invent. Math. 174 (2) (2008) 309–353.
  • [17] D. Zhan. Reversibility of chordal SLE. Ann. Probab. 36 (4) (2008) 1472–1494.