Abstract
We prove that a measure on $[-d,d]$ is the spectral measure of a factor of i.i.d. process on a vertex-transitive infinite graph if and only if it is absolutely continuous with respect to the spectral measure of the graph. Moreover, we show that the set of spectral measures of factor of i.i.d. processes and that of $\bar{d}_{2}$-limits of factor of i.i.d. processes are the same.
On prouve qu’une mesure est la mesure spectrale d’un processus facteur de i.i.d. sur un graphe infini nœud-transitive si et seulement si elle est absolument continue par rapport à la mesure spectrale de ce graphe. De plus, on montre que l’ensemble des mesures spectrales des processus facteur de i.i.d. et celui des $\bar{d}_{2}$-limites des processus facteur de i.i.d. sont les mêmes.
Citation
Ágnes Backhausz. Bálint Virág. "Spectral measures of factor of i.i.d. processes on vertex-transitive graphs." Ann. Inst. H. Poincaré Probab. Statist. 53 (4) 2260 - 2278, November 2017. https://doi.org/10.1214/16-AIHP790
Information