Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Determinantal point processes in the plane from products of random matrices

Kartick Adhikari, Nanda Kishore Reddy, Tulasi Ram Reddy, and Koushik Saha

Full-text: Open access


We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of $k$ independent $n\times n$ matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.


Nous montrons que la densité des valeurs propres pour trois classes d’ensembles de matrices aléatoires a une forme déterminantale. D’abord nous dérivons la densité des valeurs propres de produits de $k$ matrices $n\times n$ indépendantes avec entrées i.i.d. gaussiennes avec certaines matrices inversées. Dans le deuxième exemple, nous calculons la même densité pour des produits compatibles de matrices rectangulaires avec entrées i.i.d. gaussiennes et dans le dernier exemple pour des produits de matrices unitaires tronquées aléatoires et indépendantes. Nous dérivons des expressions exactes pour les limites des distributions spectrales de ces exemples.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 1 (2016), 16-46.

Received: 21 October 2013
Revised: 22 April 2014
Accepted: 30 June 2014
First available in Project Euclid: 6 January 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 60G55: Point processes 15A18: Eigenvalues, singular values, and eigenvectors 15B99: None of the above, but in this section

Determinantal point process Eigenvalues Empirical spectral distribution Limiting spectral distribution Haar measure QR decomposition Random matrix RQ decomposition Generalized Schur decomposition Unitary matrix Wedge product


Adhikari, Kartick; Reddy, Nanda Kishore; Reddy, Tulasi Ram; Saha, Koushik. Determinantal point processes in the plane from products of random matrices. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 1, 16--46. doi:10.1214/14-AIHP632.

Export citation


  • [1] G. Akemann and Z. Burda. Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A 45(46) (2012) 465201.
  • [2] G. Akemann, J. R. Ipsen and M. Keiburg. Products of rectangular random matrices: Singular values and progressive scattering. Phys. Rev. E 88(5) (2013) 052118.
  • [3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2010.
  • [4] R. Beals and J. Szmigielski. Meijer $G$-functions: A gentle introduction. Notices Amer. Math. Soc. 60(7) (2013) 866–872.
  • [5] Z. Burda, M. A. Nowak, A. Jarosz, G. Livan and A. Swiech. Eigenvalues and singular values of products of rectangular Gaussian random matrices—The extended version. Acta Phys. Polon. B 42(5) (2011) 939–985.
  • [6] F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 (1962) 140–156.
  • [7] A. S. Edelman. Eigenvalues and condition numbers of random matrices. Ph.D. thesis, Massachusetts Institute of Technology, 1989.
  • [8] P. J. Forrester. Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ, 2010.
  • [9] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6 (1965) 440–449.
  • [10] G. H. Golub and C. F. Van Loan. Matrix Computations, 4th edition. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins Univ. Press, Baltimore, MD, 2013.
  • [11] F. Götze and A. Tikhomirov. On the asymptotic spectrum of products of independent random matrices. Preprint, 2011. Available at arXiv:1012.2710v3.
  • [12] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products, 7th edition. Elsevier/Academic Press, Amsterdam, 2007.
  • [13] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Determinantal processes and independence. Probab. Surv. 3 (2006) 206–229.
  • [14] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series 51. Amer. Math. Soc., Providence, RI, 2009.
  • [15] J. R. Ipsen. Products of independent quaternion Ginibre matrices and their correlation functions. J. Phys. A 46(26) (2013) 265201.
  • [16] M. Krishnapur. Zeros of random analytic functions. Ph.D. thesis, UC Berkeley, 2006. Available at arXiv:math/0607504v1.
  • [17] R. J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1982.
  • [18] S. O’Rourke and A. Soshnikov. Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81) (2011) 2219–2245.
  • [19] J. C. Osborn. Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93(22) (2004) 222001.
  • [20] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55(5) (2000) 107–160.
  • [21] M. S. Srivastava and C. G. Khatri. An Introduction to Multivariate Statistics. North-Holland, New York, 1979.
  • [22] K. Życzkowski and H.-J. Sommers. Truncations of random unitary matrices. J. Phys. A 33(10) (2000) 2045–2057.