Abstract and Applied Analysis

Sharp Bounds for Neuman Means by Harmonic, Arithmetic, and Contraharmonic Means

Zhi-Jun Guo, Yu-Ming Chu, Ying-Qing Song, and Xiao-Jing Tao

Full-text: Open access

Abstract

We give several sharp bounds for the Neuman means N A H and N H A ( N C A and N A C ) in terms of harmonic mean H (contraharmonic mean C) or the geometric convex combination of arithmetic mean A and harmonic mean H (contraharmonic mean C and arithmetic mean A) and present a new chain of inequalities for certain bivariate means.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 914242, 8 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412277137

Digital Object Identifier
doi:10.1155/2014/914242

Mathematical Reviews number (MathSciNet)
MR3246366

Zentralblatt MATH identifier
07023296

Citation

Guo, Zhi-Jun; Chu, Yu-Ming; Song, Ying-Qing; Tao, Xiao-Jing. Sharp Bounds for Neuman Means by Harmonic, Arithmetic, and Contraharmonic Means. Abstr. Appl. Anal. 2014 (2014), Article ID 914242, 8 pages. doi:10.1155/2014/914242. https://projecteuclid.org/euclid.aaa/1412277137


Export citation