Abstract and Applied Analysis

Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative

Ai-Ming Yang, Carlo Cattani, Hossein Jafari, and Xiao-Jun Yang

Full-text: Open access

Abstract

The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 462535, 5 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512217

Digital Object Identifier
doi:10.1155/2013/462535

Mathematical Reviews number (MathSciNet)
MR3143574

Zentralblatt MATH identifier
1291.35016

Citation

Yang, Ai-Ming; Cattani, Carlo; Jafari, Hossein; Yang, Xiao-Jun. Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative. Abstr. Appl. Anal. 2013 (2013), Article ID 462535, 5 pages. doi:10.1155/2013/462535. https://projecteuclid.org/euclid.aaa/1393512217


Export citation

References

  • G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, Orlando, Fla, USA, 1986.
  • G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental Theories of Physics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
  • G. Adomian, “A review of the decomposition method in applied mathematics,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501–544, 1988.
  • M. Tatari and M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problems,” Physica Scripta, vol. 73, no. 6, pp. 672–676, 2006.
  • A.-M. Wazwaz, “Adomian decomposition method for a reliable treatment of the Bratu-type equations,” Applied Mathematics and Computation, vol. 166, no. 3, pp. 652–663, 2005.
  • V. Daftardar-Gejji and H. Jafari, “Adomian decomposition: a tool for solving a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 301, no. 2, pp. 508–518, 2005.
  • E. Larsson, “A domain decomposition method for the Helmholtz equation in a multilayer domain,” SIAM Journal on Scientific Computing, vol. 20, no. 5, pp. 1713–1731, 1999.
  • M. Tatari, M. Dehghan, and M. Razzaghi, “Application of the Adomian decomposition method for the Fokker-Planck equation,” Mathematical and Computer Modelling, vol. 45, no. 5-6, pp. 639–650, 2007.
  • J. A. T. Machado, D. Baleanu, and A. C. Luo, Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems, Springer, New York, NY, USA, 2011.
  • J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics: Recent Advances, World Scientific Publishing, Singapore, 2012.
  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010.
  • D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 2012.
  • K. S. Hedrih, “Analytical mechanics of fractional order discrete system vibrations,” Advances in Nonlinear Sciences, vol. 3, pp. 101–148, 2011.
  • K. Hedrih, “Modes of the homogeneous chain dynamics,” Signal Processing, vol. 86, no. 10, pp. 2678–2702, 2006.
  • K. Hedrih, “Dynamics of coupled systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 310–334, 2008.
  • C. Li and Y. Wang, “Numerical algorithm based on Adomian decomposition for fractional differential equations,” Computers & Mathematics with Applications, vol. 57, no. 10, pp. 1672–1681, 2009.
  • H. Jafari and V. Daftardar-Gejji, “Solving a system of nonlinear fractional differential equations using Adomian decomposition,” Journal of Computational and Applied Mathematics, vol. 196, no. 2, pp. 644–651, 2006.
  • S. Momani and Z. Odibat, “Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 488–494, 2006.
  • S. S. Ray and R. K. Bera, “Analytical solution of a fractional diffusion equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 174, no. 1, pp. 329–336, 2006.
  • Q. Wang, “Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1048–1055, 2006.
  • H. Jafari and V. Daftardar-Gejji, “Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition,” Applied Mathematics and Computation, vol. 180, no. 2, pp. 488–497, 2006.
  • M. Safari, D. D. Ganji, and M. Moslemi, “Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2091–2097, 2009.
  • M. El-Shahed, “Adomian decomposition method for solving Burgers equation with fractional derivative,” Journal of Fractional Calculus, vol. 24, pp. 23–28, 2003.
  • J. Hristov, “Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution,” International Review of Chemical Engineering, vol. 3, no. 6, pp. 802–809, 2011.
  • J. Hristov, “Heat-balance integral to fractional (half-time) heat diffusion sub-model,” Thermal Science, vol. 14, no. 2, pp. 291–316, 2010.
  • H. Jafari, H. Tajadodi, N. Kadkhoda, and D. Baleanu, “Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations,” Abstract and Applied Analysis, vol. 2013, Article ID 587179, 5 pages, 2013.
  • A. Atangana and A. Secer, “The time-fractional coupled-Korteweg-de-Vries equations,” Abstract and Applied Analysis, vol. 2013, Article ID 947986, 8 pages, 2013.
  • A. Atangana and A. K. K\il\içman, “Analytical solutions ofboundary values problem of 2D and 3D poisson and biharmonic equations by homotopy decomposition method,” Abstract and Applied Analysis, vol. 2013, Article ID 380484, 9 pages, 2013.
  • X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011.
  • X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  • K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998.
  • A. Carpinteri and A. Sapora, “Diffusion problems in fractal media defined on Cantor sets,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 90, no. 3, pp. 203–210, 2010.
  • A. K. Golmankhaneh, V. Fazlollahi, and D. Baleanu, “Newtonian mechanics on fractals subset of real-line,” Romania Reports in Physics, vol. 65, pp. 84–93, 2013.
  • X.-J. Yang, H. M. Srivastava, J.-H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013.
  • X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Systems of Navier-Stokes equations on Cantor sets,” Mathematical Problems in Engineering, vol. 2013, Article ID 769724, 8 pages, 2013.
  • X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis,” Boundary Value Problems, vol. 2013, no. 1, pp. 131–146, 2013.
  • X.-J. Yang, D. Baleanu, and W. P. Zhong, “Approximate solutions for diffusion equations on cantor space-time,” Proceedings of the Romanian Academy A, vol. 14, no. 2, pp. 127–133, 2013.
  • X.-J. Yang, D. Baleanu, M. P. Lazarević, and M. S. Cajić, “Fractal boundary value problems for integral and differential equations with local fractional operators,” Thermal Science, 2013.
  • A. M. Yang, Y. Z. Zhang, and Y. Long, “The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar,” Thermal Science, vol. 17, no. 3, pp. 707–713, 2013.
  • C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715–721, 2013. \endinput