Open Access
VOL. 55 | 2007 Marshall’s lemma for convex density estimation
Chapter Author(s) Lutz Dümbgen, Kaspar Rufibach, Jon A. Wellner
Editor(s) Eric A. Cator, Geurt Jongbloed, Cor Kraaikamp, Hendrik P. Lopuhaä, Jon A. Wellner
IMS Lecture Notes Monogr. Ser., 2007: 101-107 (2007) DOI: 10.1214/074921707000000292

Abstract

Marshall's lemma is an analytical result which implies $\sqrt{n}$--consistency of the distribution function corresponding to the Grenander estimator of a non-decreasing probability density. The present paper derives analogous results for the setting of convex densities on $[0,\infty)$.

Information

Published: 1 January 2007
First available in Project Euclid: 4 December 2007

zbMATH: 1176.62029

Digital Object Identifier: 10.1214/074921707000000292

Subjects:
Primary: 62G05 , 62G20 , 62G20

Keywords: Empirical distribution function , inequality , least squares , maximum likelihood , shape constraint , supremum norm

Rights: Copyright © 2007, Institute of Mathematical Statistics

Back to Top