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Marshall’s lemma for convex density

estimation

Lutz Dümbgen1, Kaspar Rufibach1 and Jon A. Wellner2

University of Bern and University of Washington

Abstract: Marshall’s [Nonparametric Techniques in Statistical Inference
(1970) 174–176] lemma is an analytical result which implies

√
n–consistency

of the distribution function corresponding to the Grenander [Skand. Aktuari-
etidskr. 39 (1956) 125–153] estimator of a non-decreasing probability density.
The present paper derives analogous results for the setting of convex densities
on [0,∞).

1. Introduction

Let F be the empirical distribution function of independent random variables X1,
X2, . . . , Xn with distribution function F and density f on the halfline [0,∞). Vari-
ous shape restrictions on f enable consistent nonparametric estimation of it without
any tuning parameters (e.g. bandwidths for kernel estimators).

The oldest and most famous example is the Grenander estimator f̂ of f under
the assumption that f is non-increasing. Denoting the family of all such densities by
F , the Grenander estimator may be viewed as the maximum likelihood estimator,

f̂ = argmax
{∫

log h dF : h ∈ F
}

,

or as a least squares estimator,

f̂ = argmin
{∫ ∞

0

h(x)2dx − 2
∫

h dF : h ∈ F
}

;

cf. Robertson et al. [5]. Note that if F had a square-integrable density F
′, then the

preceding argmin would be identical with the minimizer of
∫ ∞
0

(h− F
′)(x)2 dx over

all non-increasing probability densities h on [0,∞).
A nice property of f̂ is that the corresponding distribution function F̂ ,

F̂ (r) :=
∫ r

0

f̂(x) dx,

is automatically
√

n–consistent. More precisely, since F̂ is the least concave majo-
rant of F, it follows from Marshall’s [4] lemma that

‖F̂ − F‖∞ ≤ ‖F − F‖∞.

A more refined asymptotic analysis of F̂ − F has been provided by Kiefer and
Wolfowitz [3].
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2. Convex densities

Now we switch to the estimation of a convex probability density f on [0,∞). As
pointed out by Groeneboom et al. [2], the nonparametric maximum likelihood esti-
mator f̂ml and the least squares estimator f̂ls are both well-defined and unique, but
they are not identical in general. Let K denote the convex cone of all convex and
integrable functions g on [0,∞). (All functions within K are necessarily nonnegative
and non-increasing.) Then

f̂ml = argmax
h∈K

(∫
log h dF −

∫ ∞

0

h(x) dx
)
,

f̂ls = argmin
h∈K

(∫ ∞

0

h(x)2dx − 2
∫

h dF

)
.

Both estimators have the following property:

Proposition 1. Let f̂ be either f̂ml or f̂ls. Then f̂ is piecewise linear with

• at most one knot in each of the intervals (X(i), X(i+1)), 1 ≤ i < n,
• no knot at any observation Xi, and
• precisely one knot within (X(n),∞).

The estimators f̂ml, f̂ls and their distribution functions F̂ml, F̂ls are completely
characterized by Proposition 1 and the next proposition.

Proposition 2. Let ∆ be any function on [0,∞) such that f̂ml + t∆ ∈ K for some
t > 0. Then ∫

∆

f̂ml

dF ≤
∫

∆(x) dx.

Similarly, let ∆ be any function on [0,∞) such that f̂ls + t∆ ∈ K for some t > 0.
Then ∫

∆ dF ≤
∫

∆ dF̂ls.

In what follows we derive two inequalities relating F̂ − F and F − F , where F̂
stands for F̂ml or F̂ls:

Theorem 1.

inf
[0,∞)

(F̂ml − F ) ≥ 3
2

inf
[0,∞)

(F − F ) − 1
2

sup
[0,∞)

(F − F ),(1)

∥∥F̂ls − F
∥∥
∞ ≤ 2

∥∥F − F
∥∥
∞.(2)

Both results rely on the following lemma:

Lemma 1. Let F, F̂ be continuous functions on a compact interval [a, b], and let
F be a bounded, measurable function on [a, b]. Suppose that the following additional
assumptions are satisfied:

F̂ (a) = F(a) and F̂ (b) = F(b),(3)
F̂ has a linear derivative on (a, b),(4)
F has a convex derivative on (a, b),(5) ∫ b

r

F̂ (y) dy ≤
∫ b

r

F(y) dy for all r ∈ [a, b].(6)
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Then

sup
[a,b]

(F̂ − F ) ≤ 3
2

sup
[a,b]

(F − F ) − 1
2
(F − F )(b).

If condition (6) is replaced with

(7)
∫ r

a

F̂ (x) dx ≥
∫ r

a

F(x) dx for all r ∈ [a, b],

then

inf
[a,b]

(F̂ − F ) ≥ 3
2

inf
[a,b]

(F − F ) − 1
2
(F − F )(a).

The constants 3/2 and 1/2 are sharp. For let [a, b] = [0, 1] and define

F (x) :=
{

x2 − c for x ≥ ε,
(x/ε)(ε2 − c) for x ≤ ε,

F̂ (x) := 0,

F(x) := 1{0 < x < 1}(x2 − 1/3)

for some constant c ≥ 1 and some small number ε ∈ (0, 1/2]. One easily verifies
conditions (3)–(6). Moreover,

sup
[0,1]

(F̂ − F ) = c − ε2, sup
[0,1]

(F − F ) = c − 1/3 and (F − F )(1) = c − 1.

Hence the upper bound (3/2) sup(F − F ) − (1/2)(F − F )(1) equals sup(F̂ − F ) +
ε2 for any c ≥ 1. Note the discontinuity of F at 0 and 1. However, by suitable
approximation of F with continuous functions one can easily show that the constants
remain optimal even under the additional constraint of F being continuous.

Proof of Lemma 1. We define G := F̂ − F with derivative g := G′ on (a, b). It
follows from (3) that

max
{a,b}

G = max
{a,b}

(F − F ) ≤ 3
2

sup
[a,b]

(F − F ) − 1
2
(F − F )(b).

Therefore it suffices to consider the case that G attains its maximum at some point
r ∈ (a, b). In particular, g(r) = 0. We introduce an auxiliary linear function ḡ on
[r, b] such that ḡ(r) = 0 and

∫ b

r

ḡ(y) dy =
∫ b

r

g(y) dy = G(b) − G(r).

Note that g is concave on (a, b) by (4)–(5). Hence there exists a number yo ∈ (r, b)
such that

g − ḡ

{
≥ 0 on [r, yo],
≤ 0 on [yo, b).

This entails that
∫ y

r

(g − ḡ)(u) du = −
∫ b

y

(g − ḡ)(u) du ≥ 0 for any y ∈ [r, b].
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Consequently,

G(y) = G(r) +
∫ y

r

g(u) du

≥ G(r) +
∫ y

r

ḡ(u) du

= G(r) +
(y − r)2

(b − r)2
[G(b) − G(r)],

so that ∫ b

r

G(y) dy ≥ (b − r)G(r) +
G(b) − G(r)

(b − r)2

∫ b

r

(y − r)2 dy

= (b − r)
[2
3
G(r) +

1
3
G(b)

]

= (b − r)
[2
3
G(r) +

1
3
(F − F )(b)

]
.

On the other hand, by assumption (6),
∫ b

r

G(y) dy ≤
∫ b

r

(F − F )(y) dy ≤ (b − r) sup
[a,b]

(F − F ).

This entails that
G(r) ≤ 3

2
sup
[a,b]

(F − F ) − 1
2
(F − F )(b).

If (6) is replaced with (7), then note first that

min
{a,b}

G = min
{a,b}

(F − F ) ≥ 3
2

min
{a,b}

(F − F ) − 1
2
(F − F )(a).

Therefore it suffices to consider the case that G attains its minimum at some point
r ∈ (a, b). Now we consider a linear function ḡ on [a, r] such that ḡ(r) = 0 and∫ r

a

ḡ(x) dx =
∫ r

a

g(x) dx = G(r) − G(a).

Here concavity of g on (a, b) entails that∫ x

a

(g − ḡ)(u) du = −
∫ r

x

(g − ḡ)(u) du ≤ 0 for any x ∈ [a, r],

so that

G(x) = G(r) −
∫ r

x

g(u) du

≤ G(r) −
∫ r

x

ḡ(u) du

= G(r) − (r − x)2

(r − a)2
[G(r) − G(a)].

Consequently,∫ r

a

G(x) dx ≤ (r − a)G(r) − G(r) − G(a)
(r − a)2

∫ r

a

(r − x)2 dx

= (r − a)
[2
3
G(r) +

1
3
(F − F )(a)

]
,
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whereas ∫ r

a

G(x) dx ≥
∫ r

a

(F − F )(x) dx ≥ (r − a) inf
[a,b]

(F − F ),

by assumption (7). This leads to

G(r) ≥ 3
2

inf
[a,b]

(F − F ) − 1
2
(F − F )(a). �

Proof of Theorem 1. Let 0 =: t0 < t1 < · · · < tm be the knots of f̂ , including the
origin. In what follows we derive conditions (3)–(5) and (6/7) of Lemma 1 for any
interval [a, b] = [tk, tk+1] with 0 ≤ k < m. For the reader’s convenience we rely
entirely on Proposition 2. In case of the least squares estimator, similar inequalities
and arguments may be found in Groeneboom et al. [2].

Let 0 < ε < min1≤i≤m(ti − ti−1)/2. For a fixed k ∈ {1, . . . ,m} we define ∆1

to be continuous and piecewise linear with knots tk−1 − ε (if k > 1), tk−1, tk and
tk + ε. Namely, let ∆1(x) = 0 for x /∈ (tk−1 − ε, tk + ε) and

∆1(x) :=
{

f̂ml(x) if f̂ = f̂ml

1 if f̂ = f̂ls

}
for x ∈ [tk−1, tk].

This function ∆1 satisfies the requirements of Proposition 2. Letting ε ↘ 0, the
function ∆1(x) converges pointwise to

{
1{tk−1 ≤ x ≤ tk}f̂ml(x) if f̂ = f̂ml,

1{tk−1 ≤ x ≤ tk} if f̂ = f̂ls,

and the latter proposition yields the inequality

F(tk) − F(tk−1) ≤ F̂ (tk) − F̂ (tk−1).

Similarly let ∆2 be continuous and piecewise linear with knots at tk−1, tk−1 + ε,
tk − ε and tk. Precisely, let ∆2(x) := 0 for x /∈ (tk−1, tk) and

∆2(x) :=
{
−f̂ml(x) if f̂ = f̂ml

−1 if f̂ = f̂ls

}
for x ∈ [tk−1 + ε, tk − ε].

The limit of ∆2(x) as ε ↘ 0 equals
{
−1{tk−1 < x < tk}f̂ml(x) if f̂ = f̂ml,

−1{tk−1 < x < tk} if f̂ = f̂ls,

and it follows from Proposition 2 that

F(tk) − F(tk−1) ≥ F̂ (tk) − F̂ (tk−1).

This shows that F(tk)−F(tk−1) = F̂ (tk)−F̂ (tk−1) for k = 1, . . . , m. Since F̂ (0) = 0,
one can rewrite this as

(8) F(tk) = F̂ (tk) for k = 0, 1, . . . ,m.

Now we consider first the maximum likelihood estimator f̂ml. For 0 ≤ k < m
and r ∈ (tk, tk+1] let ∆(x) := 0 for x /∈ (tk − ε, r), let ∆ be linear on [tk − ε, tk],
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and let ∆(x) := (r − x)f̂ml(x) for x ∈ [tk, r]. One easily verifies, that this function
∆ satisfies the conditions of Proposition 2, too, and with ε ↘ 0 we obtain the
inequality ∫ r

tk

(r − x) F(dx) ≤
∫ r

tk

(r − x) F̂ (dx).

Integration by parts (or Fubini’s theorem) shows that the latter inequality is equiv-
alent to ∫ r

tk

(F(x) − F(tk)) dx ≤
∫ r

tk

(F̂ (x) − F̂ (tk)) dx.

Since F(tk) = F̂ (tk), we end up with
∫ r

tk

F(x) dx ≤
∫ r

tk

F̂ (x) dx for k = 0, 1, . . . ,m − 1 and r ∈ (tk, tk+1].

Hence we may apply Lemma 1 and obtain (1).
Finally, let us consider the least squares estimator f̂ls. For 0 ≤ k < m and

r ∈ (tk, tk+1] let ∆(x) := 0 for x /∈ (tk − ε, r), let ∆ be linear on [tk − ε, tk] as well
as on [tk, r] with ∆(tk) := r − tk. Then applying Proposition 2 and letting ε ↘ 0
yields ∫ r

tk

(r − x) F(dx) ≤
∫ r

tk

(r − x) F̂ (dx),

so that
∫ r

tk

F(x) dx ≤
∫ r

tk

F̂ (x) dx for k = 0, 1, . . . ,m − 1 and r ∈ (tk, tk+1].

Thus it follows from Lemma 1 that

inf
[0,∞)

(F̂ − F ) ≥ 3
2

inf
[0,∞)

(F − F ) − 1
2

sup
[0,∞)

(F − F ) ≥ −2
∥∥F − F

∥∥
∞.

Alternatively, for 1 ≤ k ≤ m and r ∈ [tk−1, tk) let ∆(x) := 0 for x /∈ (r, tk + ε),
let ∆ be linear on [r, tk] as well as on [tk, tk + ε] with ∆(tk) := −(tk − r). Then
applying Proposition 2 and letting ε ↘ 0 yields

∫ tk

r

(tk − x) F(dx) ≥
∫ tk

r

(tk − x) F̂ (dx),

so that
∫ tk

r

F(x) dx ≥
∫ r

tk

F̂ (x) dx for k = 1, 2, . . . ,m and r ∈ [tk−1, tk).

Hence it follows from Lemma 1 that

sup
[0,∞)

(F̂ − F ) ≤ 3
2

sup
[0,∞)

(F − F ) − 1
2

inf
[0,∞)

(F − F ) ≤ 2
∥∥F − F

∥∥
∞.
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