Open Access
VOL. 8 | 2007 A Plateau Problem for Complete Surfaces in the de-Sitter Three-Space
Chapter Author(s) José M. Espinar
Editor(s) Ivaïlo M. Mladenov, Manuel de León
Geom. Integrability & Quantization, 2007: 156-168 (2007) DOI: 10.7546/giq-8-2007-156-168

Abstract

In this paper we establish some existence and uniqueness theorems for a Plateau problem at infinity for complete spacelike surfaces in $S^{3}_{1}$ whose mean and Gauss–Kronecker curvatures verify the linear relationship $2 \varepsilon (H − 1) − (\varepsilon + 1)(K − 1) = 0$ for $− \varepsilon \in \mathbb{R}^+$.

Information

Published: 1 January 2007
First available in Project Euclid: 13 July 2015

zbMATH: 1152.53006
MathSciNet: MR2341201

Digital Object Identifier: 10.7546/giq-8-2007-156-168

Rights: Copyright © 2007 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

PROCEEDINGS ARTICLE
13 PAGES


Back to Top