Abstract
In this paper, we study the (1+1)-dimensional Schrödinger-Maxwell-Bloch equation (NLS-MBE) which is integrable by the Inverse Scattering Method. Its Lax pair is presented. We apply methods of the theory of integrable systems to the geometry of surfaces immersed in Euclidean spaces. Using Sym-Tafel formula we construct the first and second fundamental forms, the Gaussian (total) curvature, mean curvature and Christoffel symbols for the NLS-MBE.
Information
Published: 1 January 2020
First available in Project Euclid: 14 October 2020
Digital Object Identifier: 10.7546/giq-21-2020-320-327
Rights: Copyright © 2020 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences