VOL. 20 | 2019 Fundamental Domains of Dirichlet Functions
Chapter Author(s) Dorin Ghisa
Editor(s) Ivaïlo M. Mladenov, Vladimir Pulov, Akira Yoshioka
Geom. Integrability & Quantization, 2019: 131-1160 (2019) DOI: 10.7546/giq-20-2019-131-160

Abstract

The concept of fundamental domain, as defined by Ahlfors, plays an important role in the study of different classes of analytic functions. For more than a century the Dirichlet functions have been intensely studied by mathematicians working in the field of number theory as well as by those interested in their analytic properties. The fundamental domains pertain to the last field, yet we found a lot of theoretic aspects which can be dealt with by knowing in detail those domains. We gathered together in this survey paper some recent advances in this field. Proofs are provided for some of the theorems, so that the reader can navigate easily through it.

Information

Published: 1 January 2019
First available in Project Euclid: 21 December 2018

zbMATH: 1417.30004
MathSciNet: MR3887748

Digital Object Identifier: 10.7546/giq-20-2019-131-160

Rights: Copyright © 2019 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

PROCEEDINGS ARTICLE
30 PAGES


Back to Top