Open Access
VOL. 3 | 2002 News on Immersions of the Lobachevsky Space into Euclidean Space
Chapter Author(s) Yurij Aminov
Editor(s) Ivaïlo M. Mladenov, Gregory L. Naber
Geom. Integrability & Quantization, 2002: 165-170 (2002) DOI: doi:10.7546/giq-3-2002-165-170

Abstract

An exposition of the new results concerning the nonexistence of local isometric immersions of 3-dimensional Lobachevsky space $L^3$ into 5-dimensional Euclidean space $E^5$ with constant curvature of the Grassmannian image metric, on connections between curvatures of asymptotic lines on a domain of $L^3 \subset E^5$, on regularity theorems for surfaces obtained by Backlund transformation of a domain of $L^2 \subset S^3$ and $L^2 \subset E^3$.

Information

Published: 1 January 2002
First available in Project Euclid: 12 June 2015

zbMATH: 1022.53049
MathSciNet: MR1884843

Digital Object Identifier: doi:10.7546/giq-3-2002-165-170

Rights: Copyright © 2002 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

PROCEEDINGS ARTICLE
6 PAGES


Back to Top