Abstract
We solve in two-dimensional theta functions the integrable case $\ddot{r} = -ar + 2zr,\ \ddot{z} = -bz + 6z^2 + r^2$ (a and b are constant parameters) of the generalizied Hénon–Heiles system. The general solution depends on six arbitrary constants, called algebraic–geometric coordinates. Three of them are coordinates on the degree two (and dimension three) Siegel upper half-plane and define two-dimensional tori $\mathbb{T}^2.$ Each trajectory of the Hénon–Heiles system lies on certain torus $\mathbb{T}^2$. Next two arbitrary constants define the initial position on $\mathbb{T}^2$. The speed of the flow depends multiplicatively on the last arbitrary constant.
Information
Digital Object Identifier: 10.7546/giq-3-2002-454-460