Open Access
VOL. 4 | 2003 Compressed Product of Balls and Lower Boundary Estimates on Bergman Kernels
Chapter Author(s) Azniv Kasparian
Editor(s) Ivaïlo M. Mladenov, Gregory L. Naber
Geom. Integrability & Quantization, 2003: 193-205 (2003) DOI: 10.7546/giq-4-2003-193-205

Abstract

The image $B_{p^{\sigma},q}$ of a product of balls $B_p \times B_q$ under a compression $c_{\sigma}(X,V) = (X,V(1 - ^t(\bar{X}X)^{\frac{\sigma}{2})}$ is called acompressed product of balls of exponent $\sigma \in \mathbb{R}$. The present note obtains the group Aut($B_{p^{\sigma},q}$) of the holomorphic automorphisms and the Aut($B_{p^{\sigma},q}$)-orbit structure of $B_{p^{\sigma},q}$ and its boundary ${\partial}B_{p^{\sigma},q}$ for $\sigma \gt 1$. The Bergman completeness of $B_{p^{\sigma},q}$ is verified by an explicit calculation of the Bergman kernel. As a consequence, local lower boundary estimates on the Bergman kernels of the bounded pseudoconvex domains are obtained, which are locally inscribed in $B_{p^{\sigma},q}$ at a common boundary point.

Information

Published: 1 January 2003
First available in Project Euclid: 12 June 2015

zbMATH: 1057.32003
MathSciNet: MR1977568

Digital Object Identifier: 10.7546/giq-4-2003-193-205

Rights: Copyright © 2003 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

PROCEEDINGS ARTICLE
13 PAGES


Back to Top