VOL. 85 | 2020 Simons cone and saddle solutions of the Allen-Cahn equation
Chapter Author(s) Kelei Wang
Editor(s) Yoshikazu Giga, Nao Hamamuki, Hideo Kubo, Hirotoshi Kuroda, Tohru Ozawa
Adv. Stud. Pure Math., 2020: 471-478 (2020) DOI: 10.2969/aspm/08510471

Abstract

Simons cone is a minimal cone in $\mathbb{R}^8$, which provides a counterexample to the Bernstein problem. Corresponding objects for the Allen-Cahn equation are saddle solutions. They are conjectured to be minimal in dimension 8. We discuss some progress on this problem, in particular, the existence of minimizing solutions to Allen-Cahn equation in $\mathbb{R}^8$.

Information

Published: 1 January 2020
First available in Project Euclid: 29 December 2020

Digital Object Identifier: 10.2969/aspm/08510471

Subjects:
Primary: 35B33 , 35B40 , 35J20 , 35J25

Keywords: Allen-Cahn equation , De Giorgi conjecture , global minimizer , Minimal cone

Rights: Copyright © 2020 Mathematical Society of Japan

PROCEEDINGS ARTICLE
8 PAGES


Back to Top