VOL. 85 | 2020 Geometric nonlinear problems and GIT stability through moment maps
Chapter Author(s) Akito Futaki, Hajime Ono
Editor(s) Yoshikazu Giga, Nao Hamamuki, Hideo Kubo, Hirotoshi Kuroda, Tohru Ozawa
Adv. Stud. Pure Math., 2020: 105-114 (2020) DOI: 10.2969/aspm/08510105

Abstract

In this paper we re-visit the standard principle that if a geometric nonlinear PDE problem is set up in the moment map picture then the existence of the solution to the PDE should be related to GIT stability in algebraic geometry. We also take up Kähler metrics with constant Cahen–Gutt moment map and an extension of conformally Kähler, Einstein-Maxwell metrics.

Information

Published: 1 January 2020
First available in Project Euclid: 29 December 2020

Digital Object Identifier: 10.2969/aspm/08510105

Subjects:
Primary: 53C55
Secondary: 53C21 , 55N91

Keywords: Einstein-Maxwell equation , moment map , Scalar curvature , star product

Rights: Copyright © 2020 Mathematical Society of Japan

PROCEEDINGS ARTICLE
10 PAGES


Back to Top