Abstract
We present algebraic techniques to analyze state space models in the areas of structural identifiability, observability, and indistinguishability. While the emphasis is on surveying existing algebraic tools for studying ODE systems, we also present a variety of new results. In particular: on structural identifiability, we present a method using linear algebra to find identifiable functions of the parameters of a model for unidentifiable models. On observability, we present techniques using Gröbner bases and algebraic matroids to test algebraic observability of state space models. On indistinguishability, we present a sufficient condition for distinguishability using computational algebra and demonstrate testing indistinguishability.
Information
Digital Object Identifier: 10.2969/aspm/07710171