Open Access
VOL. 56 | 2009 On the middle Betti number of certain singularities with critical locus a hyperplane
Mamuka Shubladze

Editor(s) Jean-Paul Brasselet, Shihoko Ishii, Tatsuo Suwa, Michel Vaquie

Adv. Stud. Pure Math., 2009: 303-320 (2009) DOI: 10.2969/aspm/05610303

Abstract

We study holomorphic germs $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ with the following properties:

(i) the critical set $H$ of the germ $f$ is a hyperplane $H = \{x = 0\}$;

(ii) the transversal singularity of the germ $f$ in points of the set $H \setminus \{0\}$ has type $A_{k-1}$.

We will investigate the topological structure of the Milnor fibre for $f$ and give explicit formula for the middle Betti number of the Milnor fibre and for the quasihomogeneous case we express it in terms of weights and degrees.

Information

Published: 1 January 2009
First available in Project Euclid: 28 November 2018

zbMATH: 1197.57029
MathSciNet: MR2604088

Digital Object Identifier: 10.2969/aspm/05610303

Subjects:
Primary: 57R45

Keywords: Milnor fibration , Milnor number , non-isolated singularity

Rights: Copyright © 2009 Mathematical Society of Japan

PROCEEDINGS ARTICLE
18 PAGES


Back to Top