Open Access
VOL. 19 | 1989 Formal Groups and Conformal Field Theory over $\mathrm{Z}$
Chapter Author(s) Toshiyuki Katsura, Yuji Shimizu, Kenji Ueno
Editor(s) M. Jimbo, T. Miwa, A. Tsuchiya
Adv. Stud. Pure Math., 1989: 347-366 (1989) DOI: 10.2969/aspm/01910347

Abstract

We introduce a formal group naturally associated with algebraic curves. The formal group is isomorphic to the one obtained from the universal Witt scheme. The charge zero sector of the boson Fock space is regarded as the coordinate ring of the formal group. Using this structure, we can give tau functions. We also define new operators $f_n$, $v_n$ ($n \in \mathbf{Z}, n > 0$) on the fermion Fock space.

Information

Published: 1 January 1989
First available in Project Euclid: 17 June 2018

zbMATH: 0715.14023
MathSciNet: MR1048600

Digital Object Identifier: 10.2969/aspm/01910347

Rights: Copyright © 1989 Mathematical Society of Japan

PROCEEDINGS ARTICLE
20 PAGES


Back to Top