Abstract
The aim of this paper is to make sample computations with the Salvetti complex of the "center of mass" arrangement introduced in [CK07] by Cohen and Kamiyama. We compute the homology of the Salvetti complex of these arrangements with coefficients in the sign representation of the symmetric group on $\mathbb{F}_p$ in the case of four particles. We show, when $p$ is an odd prime, the homology is isomorphic to the homology of the configuration space $F(\mathbb{C}, 4)$ of distinct four points in $\mathbb{C}$ with the same coefficients. When $p = 2$, we show the homology is different from the equivariant homology of $F(\mathbb{C}, 4)$, hence we obtain an alternative and more direct proof of a theorem of Cohen and Kamiyama in [CK07].
Information
Digital Object Identifier: 10.2969/aspm/06210417