Abstract
We study the asymptotic behavior of a density function $$ t \to N(f; \mathcal{N}; t) = \sum_{\{\mathbf{m}=(m_1, \dots, m_n) \in \mathbb{N}^n; \mathcal{N}(\mathbf{m}) \leq t\}} f(m_1, \dots, m_n) $$ when $f:\mathbb{N}^n \rightarrow \mathbb{C}$ is a suitable multivariable complex valued multiplicative function, and the family of generalized balls $\{\mathcal{N} \le t\} \cap [0, \infty)^n$ are determined by a positive definite form on $[0, \infty)^n$. Several arithmetic applications of this work are given.
Information
Published: 1 January 2020
First available in Project Euclid: 27 May 2020
zbMATH: 07283180
Digital Object Identifier: 10.2969/aspm/08410023
Subjects:
Primary:
11M32
,
11M41
,
11N37
,
11P21
Keywords:
lattice points
,
Mean values of multivariable arithmetic functions
,
meromorphic continuation
,
multiplicative functions
,
Newton polyhedron
,
zeta functions
Rights: Copyright © 2020 Mathematical Society of Japan