VOL. 84 | 2020 On mean values of multivariable complex valued multiplicative functions and applications
Chapter Author(s) Driss Essouabri
Editor(s) Hidehiko Mishou, Takashi Nakamura, Masatoshi Suzuki, Yumiko Umegaki
Adv. Stud. Pure Math., 2020: 23-64 (2020) DOI: 10.2969/aspm/08410023

Abstract

We study the asymptotic behavior of a density function $$ t \to N(f; \mathcal{N}; t) = \sum_{\{\mathbf{m}=(m_1, \dots, m_n) \in \mathbb{N}^n; \mathcal{N}(\mathbf{m}) \leq t\}} f(m_1, \dots, m_n) $$ when $f:\mathbb{N}^n \rightarrow \mathbb{C}$ is a suitable multivariable complex valued multiplicative function, and the family of generalized balls $\{\mathcal{N} \le t\} \cap [0, \infty)^n$ are determined by a positive definite form on $[0, \infty)^n$. Several arithmetic applications of this work are given.

Information

Published: 1 January 2020
First available in Project Euclid: 27 May 2020

zbMATH: 07283180

Digital Object Identifier: 10.2969/aspm/08410023

Subjects:
Primary: 11M32 , 11M41 , 11N37 , 11P21

Keywords: lattice points , Mean values of multivariable arithmetic functions , meromorphic continuation , multiplicative functions , Newton polyhedron , zeta functions

Rights: Copyright © 2020 Mathematical Society of Japan

PROCEEDINGS ARTICLE
42 PAGES


Back to Top