Open Access
VOL. 41 | 2004 Criticality of Generalized Schrödinger Operators and Differentiability of Spectral Functions
Chapter Author(s) Masayoshi Takeda, Kaneharu Tsuchida
Editor(s) Hiroshi Kunita, Shinzo Watanabe, Yoichiro Takahashi
Adv. Stud. Pure Math., 2004: 333-350 (2004) DOI: 10.2969/aspm/04110333

Abstract

Let $\mu$ be a positive Radon measure in the Kato class. We consider the spectral bound $C(\lambda) = -\inf \sigma(\mathcal{H}^{\lambda \mu})\ (\lambda \in \mathbb{R}^1)$ of a generalized Schrödinger operator $\mathcal{H}^{\lambda \mu} = -\frac{1}{2} \Delta - \lambda \mu$ on $\mathbb{R}^d$, and show that the spectral bound is differentiable if $d \le 4$ and $\mu$ is Green-tight.

Information

Published: 1 January 2004
First available in Project Euclid: 3 January 2019

zbMATH: 1063.60109
MathSciNet: MR2083718

Digital Object Identifier: 10.2969/aspm/04110333

Rights: Copyright © 2004 Mathematical Society of Japan

PROCEEDINGS ARTICLE
18 PAGES


Back to Top