Abstract
In the previous study [6], the author provided an algebraic proof of the multicomponent commutator estimate in Besov spaces $C^{\alpha}=B_{\infty,\infty}^{\alpha}$ with $0 < \alpha < 1$. In this paper, we extend that result to general Besov spaces $B_{p,q}^{\alpha}$ with $p, q \in [1,\infty]$ and $0 < \alpha < 1$.
Information
Published: 1 January 2021
First available in Project Euclid: 20 January 2022
Digital Object Identifier: 10.2969/aspm/08710239
Subjects:
Primary:
35S50
,
60H15
Keywords:
Besov space
,
commutator estimate
,
Paracontrolled calculus
,
paraproduct
Rights: Copyright © 2021 Mathematical Society of Japan