Abstract
Miller and Sheffield introduced the notion of an imaginary surface as an equivalence class of pairs of simply connected proper subdomains of $\mathbb{C}$ and Gaussian free fields (GFFs) on them under the conformal equivalence. They considered the situation in which the conformal maps are given by a chordal Schramm–Loewner evolution (SLE). In the present paper, we construct GFF-valued processes on $\mathbb{H}$ (the upper half-plane) and $\mathbb{O}$ (the first orthant of $\mathbb{C}$) by coupling a GFF with a multiple SLE evolving in time on each domain. We prove that a GFF on $\mathbb{H}$ and $\mathbb{O}$ is locally coupled with a multiple SLE if the multiple SLE is driven by the stochastic log-gas called the Dyson model defined on $\mathbb{R}$ and the Bru–Wishart process defined on $\mathbb{R}_{+}$, respectively. We obtain pairs of time-evolutionary domains and GFF-valued processes.
Information
Digital Object Identifier: 10.2969/aspm/08710315