Translator Disclaimer
Open Access
VOL. 43 | 2006 Characteristic classes of singular varieties
Adam Parusiński

Editor(s) Shyuichi Izumiya, Goo Ishikawa, Hiroo Tokunaga, Ichiro Shimada, Takasi Sano


This is a short and concise survey on recent results on the Milnor classes of global complete intersections. By definition the Milnor class of $X$ equals the difference between the Chern-Schwartz-MacPherson and the Fulton-Johnson classes of $X$ and we describe the results that express it in terms of the local and global invariants of the singular locus of $X$. In this survey we underline the characteristic cycle approach and its realtion to the vanishing Euler characteristic, as for instance to the Euler characteristic of the Milnor fibre in the hypersurface case.


Published: 1 January 2006
First available in Project Euclid: 3 January 2019

zbMATH: 1127.14009
MathSciNet: MR2325145

Digital Object Identifier: 10.2969/aspm/04310347

Primary: 14C17 , 14J70 , 14P25 , 32S25

Keywords: characteristic cycle , Chern-Schwartz-MacPherson class , Fulton-Johnson class , Milnor fibre , Stiefel-Whitney class , vanishing Euler characteristic

Rights: Copyright © 2006 Mathematical Society of Japan


Back to Top