Abstract
We survey the use of continued fraction expansions in the algebraical and topological study of complex analytic singularities. We also prove new results, firstly concerning a geometric duality with respect to a lattice between plane supplementary cones and secondly concerning the existence of a canonical plumbing structure on the abstract boundaries (also called links) of normal surface singularities. The duality between supplementary cones gives in particular a geometric interpretation of a duality discovered by Hirzebruch between the continued fraction expansions of two numbers $\lambda \gt 1$ and $\lambda / (\lambda -1)$.
Information
Digital Object Identifier: 10.2969/aspm/04610119