Open Access
VOL. 40 | 2004 Crystal Bases and Diagram Automorphisms
Chapter Author(s) Satoshi Naito, Daisuke Sagaki
Editor(s) Toshiaki Shoji, Masaki Kashiwara, Noriaki Kawanaka, George Lusztig, Ken-ichi Shinoda
Adv. Stud. Pure Math., 2004: 321-341 (2004) DOI: 10.2969/aspm/04010321

Abstract

We prove that the action of an $\omega$-root operator on the set of all paths fixed by a diagram automorphism $\omega$ of a Kac–Moody algebra $\mathfrak{g}$ can be identified with the action of a root operator for the orbit Lie algebra $\breve{\mathfrak{g}}$. Moreover, we prove that there exists a canonical bijection between the elements of the crystal base $\mathcal{B}(\infty)$ for $\mathfrak{g}$ fixed by $\omega$ and the elements of the crystal base $\breve{\mathcal{B}}(\infty)$ for $\breve{\mathfrak{g}}$. Using this result, we give twining character formulas for the "negative part" of the quantized universal enveloping algebra $U_q(\mathfrak{g})$ and for certain modules of Demazure type.

Information

Published: 1 January 2004
First available in Project Euclid: 3 January 2019

zbMATH: 1090.17013
MathSciNet: MR2074598

Digital Object Identifier: 10.2969/aspm/04010321

Rights: Copyright © 2004 Mathematical Society of Japan

PROCEEDINGS ARTICLE
21 PAGES


Back to Top