Abstract
We reformulate a central extension of Felder's elliptic quantum group in the FRST formulation as a topological algebra $E_{q,p}(\widehat{\mathfrak{gl}}_N)$ over the ring of formal power series in $p$. We then discuss the isomorphism between $E_{q,p}(\widehat{\mathfrak{gl}}_N)$ and the elliptic algebra $U_{q,p}(\widehat{\mathfrak{gl}}_N)$ of the Drinfeld realization. An evaluation $H$-algebra homomorphism from $U_{q,p}(\widehat{\mathfrak{gl}}_N)$ to a dynamical extension of the quantum affine algebra $U_{q}(\widehat{\mathfrak{gl}}_N)$ resolves the problem into the one discussed by Ding and Frenkel in the trigonometric case. We also provide some useful formulas for the elliptic quantum determinants.
Information
Digital Object Identifier: 10.2969/aspm/07610347