Open Access
VOL. 76 | 2018 Branching rules for symmetric hypergeometric polynomials
Chapter Author(s) Jan Felipe van Diejen, Erdal Emsiz
Editor(s) Hitoshi Konno, Hidetaka Sakai, Junichi Shiraishi, Takao Suzuki, Yasuhiko Yamada
Adv. Stud. Pure Math., 2018: 125-153 (2018) DOI: 10.2969/aspm/07610125

Abstract

Starting from a recently found branching rule for the six-parameter family of symmetric Macdonald-Koornwinder polynomials, we arrive by degeneration at corresponding branching formulas for symmetric hypergeometric orthogonal polynomials of Wilson, continuous Hahn, Jacobi, Laguerre, and Hermite type.

Information

Published: 1 January 2018
First available in Project Euclid: 21 September 2018

zbMATH: 07039302
MathSciNet: MR3837921

Digital Object Identifier: 10.2969/aspm/07610125

Subjects:
Primary: 05E05 , 33C52

Keywords: branching rules , hypergeometric polynomials , symmetric functions

Rights: Copyright © 2018 Mathematical Society of Japan

PROCEEDINGS ARTICLE
29 PAGES


Back to Top