Open Access
VOL. 49 | 2007 Gaps between consecutive zeros of the zeta-function on the critical line and conjectures from random matrix theory
Chapter Author(s) Rasa Šleževičienė-Steuding, Jörn Steuding
Editor(s) Shigeki Akiyama, Kohji Matsumoto, Leo Murata, Hiroshi Sugita
Adv. Stud. Pure Math., 2007: 421-432 (2007) DOI: 10.2969/aspm/04910421

Abstract

Assuming the Riemann hypothesis and two conjectures from random matrix theory, we prove that $$ \lambda = \limsup_{n \to \infty} (\gamma_{n+1} - \gamma_n) \frac{1}{2\pi} \log \frac{\gamma_n}{2\pi} = \infty. $$

Information

Published: 1 January 2007
First available in Project Euclid: 27 January 2019

zbMATH: 1229.11115
MathSciNet: MR2405613

Digital Object Identifier: 10.2969/aspm/04910421

Subjects:
Primary: 11M26
Secondary: 15A52

Rights: Copyright © 2007 Mathematical Society of Japan

PROCEEDINGS ARTICLE
12 PAGES


Back to Top