Abstract
We introduce the $p$-resister for an infinite network and show a comparison theorem on the resisters for two infinite graphs of bounded degrees which are quasi isometric. Some geometric projections of the Royden $p$-compactifications of infinite networks are investigated and several observations are made in relation to geometric boundaries of hyperbolic networks in the sense of Gromov. In addition, a Riemannian manifold which is quasi isometric to the hyperbolic space form is constructed to illustrate a role of the bounded local geometry in studying points at infinity.
Information
Digital Object Identifier: 10.2969/aspm/05710141