Open Access
VOL. 64 | 2015 Blow up points and the Morse indices of solutions to the Liouville equation: inhomogeneous case
Futoshi Takahashi

Editor(s) Shin-Ichiro Ei, Shuichi Kawashima, Masato Kimura, Tetsu Mizumachi

Adv. Stud. Pure Math., 2015: 175-182 (2015) DOI: 10.2969/aspm/06410175

Abstract

Let us consider the Liouville equation $$ -\Delta u = \lambda V(x) e^u \quad\text{in}\ \Omega,\quad u = 0\quad \text{on}\ \partial\Omega, $$ where $\Omega$ is a smooth bounded domain in $\mathbb{R}^2$, $V(x) \gt 0$ is a given function in $C^1(\overline{\Omega})$, and $\lambda \gt 0$ is a constant. Let $\{u_n\}$ be an $m$-point blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$, in the sense that $$ \lambda_n\int_\Omega V(x)e^{u_n} dx \to 8\pi m\quad \text{as}\ n\to\infty $$ for $m\in\mathbb{N}$. We prove that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large. This extends the main result of the recent paper [13] to an inhomogeneous ($V \not\equiv 1$) case.

Information

Published: 1 January 2015
First available in Project Euclid: 30 October 2018

zbMATH: 1336.35140
MathSciNet: MR3381201

Digital Object Identifier: 10.2969/aspm/06410175

Subjects:
Primary: 35B40 , 35J25

Keywords: blow up point , Liouville equation , Morse index

Rights: Copyright © 2015 Mathematical Society of Japan

PROCEEDINGS ARTICLE
8 PAGES


Back to Top