Open Access
VOL. 55 | 2009 A quantization of the sixth Painlevé equation
Chapter Author(s) Hajime Nagoya
Editor(s) Jean-Pierre Bourguignon, Motoko Kotani, Yoshiaki Maeda, Nobuyuki Tose
Adv. Stud. Pure Math., 2009: 291-298 (2009) DOI: 10.2969/aspm/05510291

Abstract

The sixth Painlevé equation has the affine Weyl group symmetry of type $D_{4}^{(1)}$ as a group of Bäcklund transformations and is written as a Hamiltonian system. We propose a quantization of the sixth Painlevé equation with the extended affine Weyl group symmetry of type $D_{4}^{(1)}$.

Information

Published: 1 January 2009
First available in Project Euclid: 28 November 2018

zbMATH: 1185.34138
MathSciNet: MR2463505

Digital Object Identifier: 10.2969/aspm/05510291

Subjects:
Primary: 34M55 , 37K35 , 39A99 , 81S99

Keywords: affine Weyl group symmetry , Painlevé equation , quantization

Rights: Copyright © 2009 Mathematical Society of Japan

PROCEEDINGS ARTICLE
8 PAGES


Back to Top