VOL. 88 | 2023 Hilbert basis resolutions for three-dimensional canonical cyclic quotient singularities
Chapter Author(s) Kohei Sato, Yusuke Sato
Editor(s) Yukari Ito, Akira Ishii, Osamu Iyama
Adv. Stud. Pure Math., 2023: 209-225 (2023) DOI: 10.2969/aspm/08810209

Abstract

M. Ishida and N. Iwashita classified three-dimensional canonical cyclic quotient singularities [11]. By using the classification, we shall discuss Hilbert basis resolutions via $\mathrm{Hilb}^{G}(\mathbb{C}^{3})$, Fujiki-Oka resolutions and iterated Fujiki-Oka resolutions. In particular, we shall prove that there exists a Hilbert basis resolution for any three-dimensional canonical cyclic quotient singularity.

Information

Published: 1 January 2023
First available in Project Euclid: 8 May 2023

Digital Object Identifier: 10.2969/aspm/08810209

Subjects:
Primary: 14B05 , 14J17
Secondary: 13H10 , 14J30 , 14L30 , 14M25 , 52B20

Keywords: $G$-Hilbert schemes , canonical singularities , Dimension three , Fujiki-Oka resolutions , Hilbert basis resolutions , Iterated Fujiki-Oka resolutions , quotient singularities , toric varieties

Rights: Copyright © 2023 Mathematical Society of Japan

PROCEEDINGS ARTICLE
17 PAGES


Back to Top