Open Access
VOL. 72 | 2017 Godbillon–Vey invariants for maximal isotropic $C^{2}$ foliations
Chapter Author(s) Patrick Foulon, Boris Hasselblatt
Editor(s) Taro Asuke, Shigenori Matsumoto, Yoshihiko Mitsumatsu
Adv. Stud. Pure Math., 2017: 349-365 (2017) DOI: 10.2969/aspm/07210349

Abstract

For a contact manifold $(M^{2m+1}, A)$ and an $m+1$-dimensional $dA$-isotropic $C^{2}$ foliation, we define Godbillon–Vey invariants $\{\mathit{GV}_{i}\}_{i = 0}^{m+1}$ inspired by the Godbillon–Vey invariant of a codimension-one foliation, and we demonstrate the potential of this family as a tool in geometric rigidity theory. One ingredient for the latter is the Mitsumatsu formula for geodesic flows on (Finsler) surfaces.

Information

Published: 1 January 2017
First available in Project Euclid: 4 October 2018

zbMATH: 1386.53096
MathSciNet: MR3726718

Digital Object Identifier: 10.2969/aspm/07210349

Subjects:
Primary: 57D30
Secondary: 37D20 , 53D10 , 57R30

Keywords: Anosov flow , contact flow , Godbillon–Vey invariants , Mitsumatsu formula , rigidity

Rights: Copyright © 2017 Mathematical Society of Japan

PROCEEDINGS ARTICLE
17 PAGES


Back to Top