Translator Disclaimer
VOL. 69 | 2016 Big $I$-functions
Ionuţ Ciocan-Fontanine, Bumsig Kim

Editor(s) Osamu Fujino, Shigeyuki Kondō, Atsushi Moriwaki, Masa-Hiko Saito, Kōta Yoshioka

Abstract

We introduce a new big $I$-function for certain GIT quotients $W/\!\!/\mathbf{G}$ using the quasimap graph space from infinitesimally pointed $\mathbb{P}^1$ to the stack quotient $[W/\mathbf{G}]$. This big $I$-function is expressible by the small $I$-function introduced in [6, 10]. The $I$-function conjecturally generates the Lagrangian cone of Gromov-Witten theory for $W/\!\!/\mathbf{G}$ defined by Givental. We prove the conjecture when $W/\!\!/\mathbf{G}$ has a torus action with good properties.

Information

Published: 1 January 2016
First available in Project Euclid: 4 October 2018

zbMATH: 1369.14018
MathSciNet: MR3586512

Digital Object Identifier: 10.2969/aspm/06910323

Subjects:
Primary: 14D20, 14D23, 14N35

Rights: Copyright © 2016 Mathematical Society of Japan

PROCEEDINGS ARTICLE
25 PAGES


SHARE
Back to Top