Open Access
VOL. 8 | 1987 On Coxeter Arrangements and the Coxeter Number
Chapter Author(s) Peter Orlik, Louis Solomon, Hiroaki Terao
Editor(s) T. Suwa, P. Wagreich
Adv. Stud. Pure Math., 1987: 461-477 (1987) DOI: 10.2969/aspm/00810461

Abstract

Let $(G, V)$ be an irreducible Coxeter group and let $\mathscr{A}$ be the corresponding Coxeter arrangement. Let $H \in \mathscr{A}$ be a hyperplane and let $\mathscr{A}^H$ be the restriction of $\mathscr{A}$ to $H$. Let $h$ be the Coxeter number. We prove that \[|\mathscr{A}^H|=|\mathscr{A}|-h+1\] and show that $\mathscr{A}^H$ is a free arrangement whose degrees are $m_1, \cdots, m_{l-1}$ the first $l-1$ exponents $G$.

Information

Published: 1 January 1987
First available in Project Euclid: 3 May 2018

zbMATH: 0628.51010
MathSciNet: MR894305

Digital Object Identifier: 10.2969/aspm/00810461

Rights: Copyright © 1987 Mathematical Society of Japan

PROCEEDINGS ARTICLE
17 PAGES


Vol. 8 • 1 January 1987
Back to Top