Open Access
VOL. 42 | 2004 Numerical characterisations of hyperquadrics
Chapter Author(s) Yoichi Miyaoka
Editor(s) Kimio Miyajima, Mikio Furushima, Hideaki Kazama, Akio Kodama, Junjiro Noguchi, Takeo Ohsawa, Hajime Tsuji, Tetsuo Ueda
Adv. Stud. Pure Math., 2004: 209-235 (2004) DOI: 10.2969/aspm/04210209

Abstract

Smooth quadric hypersuraces in $\mathbb{P}^{n+1} (\mathbb{C})$ are numerically characterised as the smooth Fano $n$-folds of length $n$, i.e., a smooth Fano $n$-fold $X$ is isomorphic to a hyperquadric if and only if the minimum of the intersection number $(C, -K_X)$ is $n$, where $C$ runs through the rational curves on $X$.

Information

Published: 1 January 2004
First available in Project Euclid: 3 January 2019

zbMATH: 1063.14050
MathSciNet: MR2087053

Digital Object Identifier: 10.2969/aspm/04210209

Rights: Copyright © 2004 Mathematical Society of Japan

PROCEEDINGS ARTICLE
27 PAGES


Back to Top