Open Access
VOL. 47.2 | 2007 Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion
Chapter Author(s) Wei-Ming Ni, Kanako Suzuki, Izumi Takagi
Editor(s) Hideo Kozono, Takayoshi Ogawa, Kazunaga Tanaka, Yoshio Tsutsumi, Eiji Yanagida
Adv. Stud. Pure Math., 2007: 689-708 (2007) DOI: 10.2969/aspm/04720689

Abstract

We consider a reaction-diffusion system consisting of an activator and an inhibitor which models biological pattern formation. A complete description of the entire dynamics of the kinetic system, i.e., the system without diffusion terms, is given. In particular, the $\alpha$-limit sets and the $\omega$-limit sets of all trajectories are determined.

Information

Published: 1 January 2007
First available in Project Euclid: 16 December 2018

zbMATH: 1162.35315
MathSciNet: MR2387265

Digital Object Identifier: 10.2969/aspm/04720689

Rights: Copyright © 2007 Mathematical Society of Japan

PROCEEDINGS ARTICLE
20 PAGES


Back to Top